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1 Introduction

The direct-current-conducting infinitely long wire is often discussed in the context of relativistic elec-
trodynamics. It is of course a completely academic discussion since for the typical household currents
the drift velocity of the electrons in the wire, making up the conduction current, is tiny (of the order
O (1mm/s)!). Nevertheless it is unfortunately only quite confusingly discussed in the literature. So here
is my attempt for a more consistent description using a naive classical model of a metal as consisting of
a continuum of effectively positive bound charges (consisting of atoms and the bound electrons mak-
ing up the lattice forming the metal, in the following called “ions”) and negative conduction electrons,
treated as a freely moving fluid subject to some friction when moving against the positive charged rigid
background.
The confusion starts with the fact that usually it is not carefully discussed in which reference frame
the wire is uncharged. It is not the rest frame of the wire (i.e., the rest frame of the ions) but the rest
frame of the conduction electrons [Pet85]. The qualitative argument is simple: We consider a straight
wire with a constant current. In the rest frame of the conduction electrons there is a current due to
the moving positively charged background and a corresponding magnetic field. The charges within
the positive background are however bound and can be considered not to move relative to each other
due to the electromagnetic field. Thus in this reference frame the charge density vanishes everywhere
within the wire as if there were no current at all since the freely movable conduction electrons are at
rest, and there is thus no net force acting on them and thus in this reference frame no charge separation
occurs.
Since the charge density (times c ) and the current density form a four-vector, consequently in the rest
frame of the wire (i.e., the rest frame of the ions) there must be a non-vanishing charge density within
the wire due to the Lorentz-transformation properties of vector components. This is also easily ex-
plained dynamically: In this reference frame the conduction electrons move along the wire with con-
stant velocity, and thus a magnetic field is present, which causes a radial force on the conduction elec-
trons, which consequently arrange such that an electric field is built up which exactly compensates this
magnetic force. This is, of course, nothing else than the “self-induced” Hall effect.
This is taken into account automatically when the correct relativistic version of Ohm’s Law is consid-
ered, which is sometimes approximated with the simple non-relativistic form, consequently leading to
non-covariant approximations of the fields.
In contradistinction to an earlier version of this manuscript, the single current-conducting wire does
not allow for a consistent description, which is understandable since one needs a closed circuit to have
a direct current. So in the following we assume a very long coaxial cable consisting of a cylindrical
straight wire of radius a1 along the 3-axis of our Cartesian coordinate system and a parallel cylindrical
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shell of inner radius a2 and outer radius a3. We shall treat this problem entirely in the rest frame of the
wire. The only necessary relativistic correction compared to the standard treatment [Som52] is the use
of the correct relativistic formulation of Ohm’s Law, which we derive using the classical Drude model
of electric conduction.
The notation is as follows: Four-vectors are written as x = (x0, x⃗), the Minkowski fundamental form is
given by ηµν = diag(1,−1,−1,−1). Four-velocities are meant in dimensionless form, i.e., u = γ (1, β⃗)

with β= v⃗/c and γ = 1/
q

1− β⃗2.

2 Relativistic description of Ohm’s Law

First we derive the correct relativistic version of Ohm’s Law. To that end we consider the motion of an
electron with charge qe = −e in the electromagnetic field within the wire. In addition to the Lorentz
force, there is also a friction force. We start to describe the motion of the electron in the manifestly
covariant way with the four-velocity u = γ (1, β⃗) = ẋ/c with β⃗= v⃗/c , where ẋ = dx/dτ. The equation
of motion then reads

mcdτuµ =−eF µνuν +Kµ
fric

. (1)

The Faraday tensor F µν is described in detail in [Hee19].
The relativistic version of the friction force, which we assume to be proportional to the velocity of the
particle (Stokes friction) can be written in a manifestly covariant way by introducing the four-velocity
(Uµ) of the medium (which in our case by definition is the four-velocity of the wire). Then we can write
for the friction force on a conduction electron with four-velocity, u, and four-momentum p = mc u,

Kµ
fric
= α(Uµuν −U νuµ)pν = α[mcUµ− (U · u)pµ], (2)

where α is the friction coefficient, which is obviously a Lorentz-scalar quantity.
For a direct current, i.e., for a time-independent jµ we have dτu = 0. This implies Kµ

fric
= eF µνuν .

From this we get the four-current of the conduction electrons

jµ− =−ncondec uµ =
σ

U · u
F µνuν −

encondc
U · u

Uµ, (3)

where ncond is the number density of the electrons as measured in their (local) rest frame (a Lorentz
scalar) and the electric conductivity,

σ =
nconde2

αm
, (4)

which also is a Lorentz scalar. The total four-current density within the wire reads

jµwire =
σ

U · u
F µνuν + ec
�

n+−
ncond

U · u

�

Uµ, (5)

where n+ is the number density of positive ions, as defined in their (local) rest frame. In the following
we work in the rest frame of the wire (Uµ) = (1,0,0,0), where the correct relativistic form of Ohm’s
Law is given by the spatial components of (5),

j⃗ = σ(E⃗ + β⃗× B⃗). (6)

We note that in this frame ρwire = e(n+− ncondγ ) = ρ++ρcond with ρ+ = en+ and ρcond =−eγncond.
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3 Covariant magnetostatics

Now we can write down the relativistic magnetostatic Maxwell’s equations, expressed in (1+3)-notation
in the restframe of the wire as

∇⃗× E⃗ = 0, ∇⃗ · B⃗ = 0, (7)

∇⃗ · E⃗ = ρwire, (8)

∇⃗× B⃗ =
1
c

j⃗cond = ρcondβ⃗ (9)

j⃗cond = ρcondv⃗ = σ(E⃗ + β⃗× B⃗). (10)

For our DC-carrying coaxial cable we make the ansatz that within the wires ρcond = const as well es
j⃗cond = const and thus β⃗= const. We work in cylinder coordinates (R,ϕ, z) and define the regions

• I interior of the inner wire, 0≤ R≤ a1,

• II free region between the conductors, a1 < R< a2,

• III the outer conductor a2 ≤ R≤ a3,

• IV the region outside the cable, R> a3.

We assume that there is a total current I running along the conductors. We do not discuss the voltage
source at one and (which we push to z→−∞) nor some closure of the circuit by a connection of the
two conductors via a resistor at the other end at z→+∞, i.e., we simply make the ansatz

j⃗ (I) =
I
πa2

1

e⃗3, j⃗ (II) =− I
π(a2

3 − a2
2)

e⃗3, j⃗ (III) = j⃗ (IV) = 0 (11)

with I > 0. We note that this ansatz guarantees global charge conservation since integration over a
plane, P perpendicular to the 3-axis gives

∫

P
d2 f⃗ · j⃗ = j (I)πa2

1 + j (II)π(a2
3 − a2

2) = 0. (12)

The homogeneous Maxwell equations (7) are solved by introducing the scalar and vector potentials,

E⃗ =−∇⃗Φ, B⃗ = ∇⃗× A⃗, (13)

and due to gauge invariance we can impose the Coulomb-gauge constraint on the vector potential,

∇⃗ · A⃗= 0. (14)

3.1 The magnetic field

Obviously the equations for the magnetic field completely decouple from those of the electric field.
For the latter we also need the magnetic field. So we solve for the magnetic field first. Plugging (13)
into (9) we get

∇⃗× (∇⃗× A⃗) =−∆A⃗=
1
c

j⃗cond. (15)
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Since j⃗cond = jcond e⃗z due to the cylindrical symmetry the ansatz

A⃗=A(R)e⃗z (16)

seems plausible. With this ansatz (14) is automatically fulfilled, and we get, using the formulae for the
curl in cylindrical coordinates

B⃗ = ∇⃗× A⃗=−A′(R)e⃗ϕ = Be⃗ϕ (17)

and

∇⃗× B⃗ =−e⃗z
1
R

d
dR

�

RA′(R)
�

e⃗z =−∆A⃗=
j
c

e⃗z (18)

With j = const the general solution of this equation reads

A(R) =−
j

4c
R2+C1 ln(R/R0)+C2. (19)

Here R0 can be chosen arbitrarily. From (17) we find

B =−A′ =
j

2c
R−

C1

R
. (20)

In region I we must have obviously j = j (I) = I/a2
1 and C (I)1 = 0, because there are no singularities along

the cylinder axis, R= 0. So we have

B (I) =
I

2πca2
1

R. (21)

In region II j = 0. Since there are no surface-current densities along the cylinders, the B⃗ -field is contin-
uous everywhere and thus B (II)(a1) =C (II)1 /a1 = B (I)(a1) = I/(2πa1c) leads to

B (II) =
I

2πcR
. (22)

In region III j = j (III) =−I/[π(a2
3 − a2

1)] and thus

B (III) =
−I

2πc(a2
3 − a2

1)
R−

C (III)1

R
. (23)

Continuity at R= a2 determines C (III)1 and

B (III) =
I

2πc(a2
3 − a2

2)

�

a2
3

R
−R

�

. (24)

In region IV j = j (IV) = 0 and the continuity argument finally yields

B (IV) = 0. (25)
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3.2 The electric field

To find the electric field, we first take the divergence of Ohm’s Law (10) making use of (8) and (9)

∇⃗ · j⃗ = 0= σ∇⃗ · (E⃗ + β⃗× B⃗) = σ
�

ρwire−
1
c
β⃗ · j⃗
�

= σ
�

ρwire−ρcondβ
2� . (26)

This implies that
ρwire = ρcondβ

2. (27)

This shows that the conductors carry a charge density of the same sign as the particles responsible for
the current, i.e., in our case of a usual metal the conduction electrons, i.e., ρwire < 0.
As is clear from our model for electric conductivity this charging of the wires is due to the self-induced
Hall effect, i.e., due to the magnetic field the magnetic Lorentz force drags the conduction electrons
inside the wire, which causes an electric field counter acting this force.
Now we can determine the electric field in the conductors, i.e., in regions I and III from Ohm’s Law
(10) only. In both regions I and III

β⃗× B⃗ =βBe⃗z × e⃗ϕ =−βBe⃗R. (28)

Because j⃗ = j e⃗z we have

ER =βB , Ez =
j
σ

(29)

It is clear that ER adjusts such that the radial component of the net force on the conduction electrons
vanishes, and Ez is responsible for the flow of the current along the wire.
In region I we have from (21)

E (I)R =
Iβ(I)

2πa2
1 c

R< 0, E (I)z =
I
πa2

1σ
. (30)

In the same way we obtain the electric field in region III, using (24)

E (III)R =
Iβ(III)

2πc(a2
3 − a2

2)

�

a2
3

R
−R

�

> 0, E (III)z =− I
π(a2

3 − a2
2)σ

. (31)

In the free regions II and IV we have ρwire = 0 and j = 0 as well as σ = 0. In these regions we use (13)
in (8), leading to the Laplace equation for the scalar potential,

∆Φ= 0. (32)

In addition we need the continuity of the electric-field components tangential to the surfaces of the
wire. As it turns out, the separation ansatz

Φ= f (R)G(z) (33)

is sufficient to fulfill all conditions. With the Laplace operator in cylinder coordinates, we get

1
R
[R f ′(R)]′ g (z)+ f (R)g ′′(z) = 0. (34)
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Obviously, since we need f (R) ̸= 0 and g (z) ̸= 0, we can fulfill this with g linear in z,

g ′′(z) = 0 ⇒ g (z) =G1z +G2, (35)

[R f ′(R)]′ = 0 ⇒ f (R) = F1 ln
�R

R 0

�

+ F2 (36)

with integration constants, G1, G2, F1, and F2. Obviously we can set G1 = 1 without loss of generality,
because we can lump this constant into F1 and F2.
This implies

E⃗ =− f ′(R)g (z)e⃗R− f (R)g ′(z)e⃗z =−
F1

R
(z +G2)e⃗R−
�

F1 ln
�

R
R0

�

+ F2

�

e⃗z . (37)

In region II it’s most convenient to set R0 = a1. Then we can determine the constants F1 and F2 from
the continuity of E (II)z at R= a1 and R= a2, i.e.,

E (I)z (a1) =
I
πa2

1σ
= E (II)z (a1) =−F2 ⇒ F2 =−

I
πa2

1σ
, (38)

E (II)z (a2) =−
I

π(a2
3 − a2

2)σ
= E (III)z (a2) =−F1 ln

�

a2

a1

�

− F2 (39)

The solution finally reads

E (II)z =
I
πa2

1σ
− I

ln(a2/a1)σ

�

1
a2

1

+
1

a2
3 − a2

2

�

ln
�

R
a1

�

. (40)

For the radial component from (37) we get

E (II)R =− I z
ln(a2/a1)σR

�

1
a2

1

+
1

a2
3 − a2

2

�

. (41)

We have arbitrarily assumed that G2 = 0, i.e., E (II)R = 0 at z = 01.

The same arguments also apply to region IV. There we must impose the continuity condition on E (IV)z
at R = a3 and make sure that for R→∞ the field must stay finite, which implies F1 = 0 in (37). The
result is

E (IV)z =− I
π(a2

3 − a2
2)σ

, E (IV)R = 0. (42)

We note that from (27) the non-vanishing components of the four-currents in the conductors are
�

j 0

j 3

�

= ρcondβc
�

β
1

�

. (43)

Lorentz-boosting to the rest-frame of conduction electrons gives
�

j ′0

j ′3

�

= γ
�

1 −β
−β 1

��

j 0

j 3

�

=
βc
γ
ρcond

�

0
1

�

. (44)

This shows that indeed in the rest frame of the conduction electrons the charge density within the wires
vanishes. One should also note that ρ′+ =−ρcond/γ is the charge density of the ions in the rest frame
of the electrons. In this frame the velocity of the ions is−βc e⃗3. So the current density in the rest frame
of the conduction electrons within the wires is due to the motion of the ions, as it must be.

1The full physical determination of G1 and G2 will become clear in Sec. 7, when we approximately treat a coaxial cable of
finite length with an ideal voltage source at one end at z = 0 and a resistor at the other end at z = l .
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4 Surface charges

In this Section we evaluate the surface charges on the inner conductor at R= a1 and the outer conductor
at R= a2. It is given by using an infinitesimal Gaussian pillbox around the corresponding surface. We
find

Σ(I) = E (II)R (a1)− E (I)R (a1) =−
Iβ(I)

2πa1c
− I z

ln(a2/a1)a1σ

�

1
a2

1

+
1

a2
3 − a2

2

�

, (45)

Σ(III) = E (IV)R (a2)− E (II)R (a2) =
Iβ(III)

2πa2c
+

I z
ln(a2/a1)a2σ

�

1
a2

1

+
1

a2
3 − a2

2

�

, (46)

There is no surface charge at R= a4.

5 Charge neutrality

Finally we note that overall the currents are charge neutral. To see this we calculate the line-charge
density of the entire coaxial cable. The charge per length in each of the conductors consists of both the
bulk charge inside the conductors and the surface charges (45) and (46). With (8) we can express the
charge densities inside the conductors, using (30) and (31)

ρ(I) = ∇⃗ · E⃗ (I) = 1
R

�

RE (I)R

�′
=
β(I)I
πa2

1 c
, ρ(III) = ∇⃗ · E⃗ (III) = 1

R

�

RE (III)R

�′
=−

β(I)I
π(a2

3 − a2
2)c

. (47)

For the total line charge we then indeed find, using (45-47)

λ(z) = ρ(I)πa2
1 +ρ

(III)π(a2
3 − a2

2)+ 2πa1Σ
(I)+ 2πa2Σ

(III) = 0. (48)

6 The “single-wire limit”

The often discussed somewhat artificial case of a single infinite cylindrical wire carrying a direct current
can be interpreted as the limit, a2 →∞. In this limit one has of course only region I (the interior of
the wire) and II (the free space outside). Then the fields are given by (21), (22), (30), (40), and (41) in the
said limit,

B (I) =
I

2πca2
1

R,

E (I)R =
Iβ(I)

2πa2
1 c

R,

E (I)z =
I
πa2

1σ
,

E (II)R = 0, E (II)z =
I
πa2

1σ
.

(49)

The charge density in the wire and the surface-charge density on the boundary of the wire are given by
(47) and (45) respectively

ρ(I) =
β(I)I
πa2

1 c
, Σ(I) =−

Iβ(I)

2πa1c
. (50)
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This solution has been found in [Gab93].

7 Approximate solution for a coaxial cable of finite length

TBD
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