
The relativistic wave equation

Hendrik van Hees

November 21, 2023

1 Introduction

We discuss the wave equation
1
c2
s
∂ 2

t Φ−∆Φ= 0 (1)

for waves of a phase-velocity cs ≤ 1 and Φ some scalar field as a relativistic wave equation. A concrete
example is the description of sound waves in a medium, where Φ can be taken as the pressure, which is
defined in the (local) rest frame of the fluid and thus as a scalar field. Also, as far as the kinematics of the
wave four-vector and four-velocities of the emitter and observer is concerned, our analysis also applies
to plane light waves in a dielectric non-absorptive medium in the ralm of normal dispersion, i.e.,
refractive index n > 1.
This example also makes it clear that to interpret this wave equation with an arbitrary phase velocity
cs < c we have to take into account that (1) can only be taken as a relativistic equation, when we
interpret it to be written down in the one preferred inertial reference frame of the problem, i.e., in the
rest frame of the fluid. Indeed, as it stands (1) is only manifestly covariant, if cs = c .
We use the following conventions concerning Minkowski space: the pseudo-metric components are
taken to be (ηµν ) = (η

µν ) = diag(1,−1,−1,−1). Underlined symbols denote four-vectors components,
k = (kµ), and the Minkowski product is written as k · x = ηµνkµxµ. The space-time four-vector

x = (c t , x⃗) and ∂µ = ∂ /∂ xµ. Four-velocities u are normalized, u = γ (1, β⃗), γ = 1/
q

1− β⃗2, and

β⃗ = v⃗/c . Of course |β⃗| = β < 1. We also use βs = cs/c = 1/n. One should note that cs, βs, and
n are scalars, because cs are the phase velocities of the waves in the rest frame of the medium. The
objective of the following calculation is to derive a general expression for the “effective” wave velocity
in an arbitrary frame of reference, for a general velocity of the medium β⃗M and the Doppler effect for
arbitrarily moving emitters and observers with velocities β⃗E and β⃗O. I am not aware of any reference,
where this in principle straight-forward calculation can be found. The exception is of course the simpler
case of cs = c , i.e., (the kinematic part) of light waves in a vacuum, where there is no preferred frame of
reference, because there is no medium (aka aether) for light waves in a vacuum. We treat this simpler
case first. It can be found in many textbooks on relativity (e.g., [LL96]) as well as already in Sect. 7 of
Einstein’s famous paper [Ein05].
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2 The case cs = c

The case cs = c is special, because in this case there is no preferred reference frame, and of course
the only real-world application are electromagnetic waves in the vacuum. Here we shall, however,
not bother with the electromagnetic field but only investigate the Doppler effect for plane waves, for
which the discussion of a scalar field is entirely sufficient. Indeed in this special case (1) is a manifestly
covariant field equation, since it can be written as

□Φ= 0, □= ∂ · ∂ = ηµν∂µ∂ν =
1
c2
∂ 2

t −∆, ∆= ∇⃗ · ∇⃗. (2)

For plane waves,
Φ(x) = Φ0 exp(−ik · x) (3)

we simply get
□Φ(x) =−k2Φ(x) = 0, (4)

i.e., the wave four-vector k is light-like, and thus the dispersion relation in any frame is

k0 =ω/c = |k⃗|. (5)

So in any frame we have k = k(1, n⃗) with n⃗2 = 1.
Now it is very easy to treat the Doppler effect. Since k is a four-vector, in any reference frame moving
with a velocity v⃗ = cβ⃗ with respect to our computational frame the frequency of our wave is given
by ω

β⃗
= u · k/c , where u = γ (1, β⃗). If we consider the case that the light emitter moves with a four-

velocity uE and an observer with uO the relation between the freqency of the wave in the rest frame
of the emitter,ωE, and that measured by the observerωO is

ωO

ωE
=

uO · k
uE · k

=

√

√

√

√

1−β2
E

1−β2
O

1−βO cosθO

1−βE cosθE
. (6)

Here θO (θE) is the angle between the velocity of the observer (emitter) and the direction of wave
propagation n⃗, as measured in the arbitrary computational reference frame.
The usual Doppler effect follows by taking the computational frame as the observer’s frame, i.e., by
setting βO = 0. Then ΘE is the angle between the velocity of the emitter and the wave vector k⃗ as
measured in the observer’s rest frame, and (6) leads to the well-known formula

ωO

ωE
=

Æ

1−β2
E

1−βE cosθE
. (7)

Especially for ΘE = 0, where the source moves towards the the observer in the same direction as the
light, one gets the maximal possible blue-shift,

ωO

ωE
=

√

√

√
1+βE

1−βE
. (8)

2



The other extreme case is ΘE = π, where the source moves away from the observer, i.e., opposite to
the direction of the light, leading to the maximal possible red-shift,

ωO

ωE
=

√

√

√
1−βE

1+βE
. (9)

Another interesting case is ΘE = π/2, where the light is emitted perpendicular to the velocity of the
emitter. In this case one gets a red-shift, which is entirely due to time dilation,

ωO

ωE
=
Æ

1−β2
E. (10)

Since here the emitter is moving the period of the light wave, τE = 2π/ωE, as measured in the rest frame
of the emitter is time-dilated in the observer’s frame, we get a red-shift. To also derive the aberration
effect, we can describe the situation in the rest frame of the emitter. In this frame we have

k = k ′
�

1
n⃗′

�

, uE =
1
Æ

1−β′2O

�

1

β⃗′O

�

=
1
Æ

1−β2
E

�

1

−β⃗E

�

. (11)

Here we have used the fact that β⃗′O =−β⃗E since the frame Σ (rest frame of the observer) moves with
respect to the frame Σ′ (rest frame of the emitter) with the opposite velocity than Σ′ with respect to Σ,
which follows immediately from the corresponding Lorentz boosts.
Seen from Σ′ we thus have

ωO

ωE
=

u ′O · k
′

k ′0
=

1+βE cosθ′O
Æ

1−β2
E

. (12)

Comparing this with (7) leads after some algebra to

cosΘE =
cosθ′O+βE

1+βE cosθ′O
, (13)

where βE =β
′
O = |β⃗E|.

This shows that the angle between the velocity of the emitter and the wave vector wrt. Σ is different
from the angle between the velocity of the observer and the wave vector wrt. Σ′. This effect is called
aberration. It is noteworthy to observe that the transverse Doppler effect wrt. Σ′ is a blue-shift,
because for θ′O =π/2 we get from (12)

ωO =
ωE
Æ

1−β2
E

. (14)

As above this is also a pure time-dilation effect: since here the observer is moving he sees the proper
period τE = 2π/ωE as τO = τE/γO = τE/γE, leading to (14).

3 The case cs < c

Now we come back to the general case of a sound wave with phase velocity cs as measured in the rest
frame of the medium. Here (1) is of course not manifestly covariant, and indeed we have to take into
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account that this equation holds only in the rest frame of the medium. To formulate it in a manifestly
covariant way, we simply have to introduce the four-velocity of the medium uM. It is also convenient
to introduce the tensor

hµν = δ
µ
ν − uµMuMν , (15)

which projects four-vectors to a four-vector that is Minkowski-orthogonal to the fluid four-velocity. It
obeys the projection property

hµν hρµ = hρν . (16)

since in the rest frame of the fluid uM = (1,0,0,0) we can write (1) in manifestly covariant form

1
β2

s
(uµM∂µ)

2Φ+ hµν∂µ∂νΦ= 0. (17)

Indeed in the fluid-rest frame we get uµM∂µ = ∂0 = ∂t/c and hµν∂µ∂ν = □− ∂ 2
0 = −∆, i.e., (17) repro-

duces (1). Since it is a manifestly covariant equation, it is the right description in any frame, where the
medium flows with a constant velocity v⃗M = cβ⃗M.
With our plane-wave ansatz we (3) we get the equation,

1
β2

s
(k · uM)

2+ k2− (k · uM)
2 = 0. (18)

We note that in the rest-frame of the fluid we get simply (k0)2/β2
s − k2 = 0 and thus k0 =ω/c =βsk,

i.e., in this frame k = k(βs , n⃗). This shows that k2 = k2(β2
s − 1) < 0, i.e., k is a space-like vector,

which of course holds true in any frame.
The dispersion relation is found by solving the quadratic equation (18) for k0, which leads to

k0

k
=βeff =

1
1−β2

Mβ
2
s

h

βM cosθM(1−β
2
s )+βs

Æ

1−β2
M

q

1−β2
M(cos2θM+β2

s sin2θM)
i

. (19)

Here θM is the angle between β⃗M and k⃗ andβeff = ceff/c , where ceff is the apparent speed of light wrt.
the computational frame of reference. It describes the speed of light, where both the emitter and the
observer are at rest wrt. that frame.
We note that in the rest-frame of the medium, i.e., for βM = 0 we indeed get the correct solution
k0/k =βs. In the limitβs = 1 we also get the correct result k0/k = 1, and any reference to the velocity
of the medium is gone, as expected.
Now, with k0 given by (19), we can calculate the proper frequencies of the wave for an arbitrarily
moving emitter and/or observer as

ωO

ωE
=

uO · k
uE · k

. (20)

In the literature the Fizeau experiment is discussed, i.e., the apparent speed of light in a medium with
refractive index n > 1 (here n denotes the refractive index as measured in the rest frame of the medium).
Of course in our notation that means cs = c/n < c is the speed of light in the medium as measured in
the rest frame of the fluid. One should note that for a dispersive medium one has to take n = n(ωM)
with the frequency of the light-wave in the rest frame of the medium, ωM = ck · uM with k0 given by
(19).
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In the literature one usually finds the result for the rest frame of the fluid, which we denote with a ∗,
i.e., β∗M = 0 and k∗ = k∗(βs, n⃗∗), where (20) becomes very simple

ω∗O
ω∗E
=

√

√

√

√

1−β∗2E

βs−β∗2O

1−β∗O cosθ∗2O

βs−β∗E cosθ∗2E

. (21)

One must however note that of course θ∗O and θ∗E are not the same as the angles in any other reference
frame, where the medium moves with a speed given by βO ̸= 0 (“aberration effect”). Of course since
(21) is a scalar quantity, because it refers to the frequencies of the wave measured in physically deter-
mined frames of reference (the rest frame of the observer and the emitter, respectively), it is the same
quantity as given in (20) but expressed in terms of different observables referring to the different frames.
Of course we can get the relations by the Lorentz boost from the general frame to the rest frame of the
fluid with boost velocity v⃗M, but here we refrain from working out these lengthy formulae.
In optics it is more common to express the optical properties of the medium in terms of the effective
index of refraction. Thus we insertβs = 1/n in (19), and after some algebra obtain the effective index
of refraction of a moving medium, which is of course a frame-dependent quantity,

k
k0
= neff =

(n2− 1)βM cosΘM−
Æ

(1−β2
M)[(n2− 1)(1−β2

M cos2θM)+ 1−β2
M]

(n2− 1)β2
M cos2θM− (1−β2

M)
. (22)

In 1851 Hippolyte Fizeau (1819-1896) measured the apparent velocity of light ceff. At his time the
expectation was that the light, i.e., the aether which is thought to be the fluid whose oscillations are
observed as light, should be dragged along with the medium, and the velocity of light should be simply
given by the (of course Newtonian) addition of the velocity of light as measured in the rest frame of
the medium (including the aether) and the velocity of the medium, i.e., ceff = c/n + vM cosθM. Our
analysis of course results in (19). To better compare it to Fizeau’s expectation, we expand this equation
up to first order in βM = vM/c . This leads to

ceff =
c
n
+ vM cosθM

�

1− 1
n2

�

+O (β2
M), (23)

and this was indeed, what Fizeau found in his interference experiment 1. As any O (βM) effect, also this
result agrees with Fresnel’s aether theory, which was not well accepted at Fizeau’s time. This predicted
that the light (or rather the aether) is indeed only “partially dragged” with the medium with “Fres-
nel’s drag coefficient” f = 1− 1/n2. This aether theory also leads to results consistent with the failed
attempts to experimentally confirm the “aether wind” in the vacuum, i.e., the motion of the emitter
and/or observer wrt. the aether restframe with measurements of effects of order O (βM), for which
Fresne’s drag coeeficient, f = 1. This again triggered Michelson and Morley’s famous interferometer
experiment for measuring the “aether wind” due to the motion of the Earth around the Sun, which
was sensitive enough to order O (β2). The series expansion of our relativistic result (19) to this order
reads

ceff =
c
n
+ vM cosθM

�

1− 1
n2

�

−
(n2− 1)(1+ cos2θM)

2n3
cβ2

M+O (β
3
M). (24)

According to our relativistic treatment there is also no “aether wind” at this sensitivity, because also
this correction vanishes for n = 1, and indeed the relativistic result for light propagation in the vacuum
must exactly lead to ceff = c .

1See https://en.wikipedia.org/wiki/Fizeau_experiment

5

https://en.wikipedia.org/wiki/Fizeau_experiment


References

[Ein05] A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. d. Phys. 322 (1905) 891.
https://doi.org/10.1002/andp.19053221004

[LL96] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics 2, The Classical Theory of
Fields, Butterworth Heinemann, Oxford, 4 ed. (1996).

6

https://doi.org/10.1002/andp.19053221004

	Introduction
	The case cs=c
	The case cs<c

