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1 Introduction

In this Insights article, I’d like to address again the issue of the abuse of the word photon, which often
leads to debates in the forums and was already discussed in my previous Insights article for the special
case of abusing the notion of photons to explain the photoelectric effect like Einstein in one of his
famous articles of 1905.
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The more general abuse of the word “photon” when discussing classical properties of light is due to one
of the sins of physics didactics, which is in my opinion even a mortal sin, because it exposes young stu-
dents (often already highschool students) with old-fashioned concepts which are outdated for more than
90 years, because then modern quantum theory has been discovered. In addition, the idea of a “light
particle” in a naive sense is particularly misleading, because according to our contemporary modern
understanding (which reaches as far back as 1927, when Dirac introduced the notion of the quantized
electromagnetic field, which is the only way to make sense of quantum effects related to electromag-
netism) a photon does not even allow for the definition of a position operator, and the classical limit
of quantum electrodynamics (QED), as far as radiation is concerned, does not admit a naive classical-
particle limit but rather a classical-field limit. So, if you do not need the quantized electromagnetic
field to explain a phenomenon but can do with classical electrodynamics and Maxwell’s equations, you
better use the latter. If you really need photons the only securely correct way is to use QED anyway,
and the good news is that QED is not as difficult as one might think.
The title of the article is due to a famous article by W. E. Lamb [Lam95] with the title “Anti-Photon”.
I recommend to read this paper, because it gives a brief but complete summary about the historical
development of the theory of electromagnetic radiation (light) and the ideas about photons.
On the other hand, in my opinion, Lamb’s advice not to use the word “photon” anymore, is a bit
unrealistic and also unjustified. One should, however use it in an appropriate way, clearly defining
what is implied by its notion according to modern relativistic quantum field theory.
In the following, I try to do this as simple as possible but not simpler, and unfortunately the issue is
not as simple as non-relativistic quantum mechanics and in some details not even as simple as the rela-
tivistic theory of massive particles, when it comes to the description of interactions between particles
or condensed matter and radiation. Only the free radiation field is really simple. Fortunately, it is the
most important part in defining what a photon really is in the modern sense.
Another dilemma in such a short article is the choice of topics, because in the last about 30 years,
photons are used for the most astonishing experiments concerning the basic principles of quantum
theory. In principle photons occur in two contexts:

(a) in high-energy particle and nuclear physics, where one investigates the production of photons
either in collisions of (a few) elementary particles (usually either in e+e− collisions, pp collisions,
or in relativistic heavy-ion collisions, where photons are one of the very important probes for the
hot and dense medium made up of quite many strongly interacting particles (quarks and gluons
in the scalled quark-gluon plasma phase in the early as well as hadrons in the later stages of the
evolution of the hot and dense “fireball” created in the collision).

(b) in quantum optics, where one uses usual optical elements like beam splitters, mirrors, lenses,
gratings, etc. to investigate radiation consisting of a few (or even a single) photon. Here, one
applies a semiclassical theory, where the optical elements are usually treated effectively as in clas-
sical electrodynamics but the radiation field must be treated as a quantum field. This is justified,
because the dispersion theory of light in dielectrics or metals in terms of quantum theory in the
here applicable linear-response approximation boils down to the introduction of effective macro-
scopic parameters like the (usually complex) index of refraction and/or electric conductivity.

On the other hand, also strong coherent fields of radiation due to various kinds of lasers are
available for more than 50 years now, and this has brought also non-linear optics into the focus.
For our topic the most important development are highly efficient sources of entangled photon
pairs in birefringent crystals.
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The rest of the article is structured as follows:
First (Sect. 3) I give a very short review of the Maxwell equations in a vacuum, which is then used
in Sect. 4 to canonically quantize the free radiation field in the fully gauge-fixed formalism (“radiation
gauge”). Then in Sect. 6 I discuss the classical limit in the sense of states of the quantized electromagnetic
field that are well described by classical electromagnetism. As the first application of the formalism we
derive the Planck spectrum for black-body radiation from QED, which is the modern version of the
historical starting point of both quantum theory in general and the quantum theory of radiation (Sect.
5). Then I review the theory for the two most simple proofs that single photons in the modern sense
really exist, namely a beam-splitter experiment with single photons (Sect. 7) and quantum beats (Sect.
10). I hope with these very simple applications, I can convince the users of the Physics Forum that
no inconsistent old-fashioned concepts like “wave-particle dualism” or even a naive particle picture for
photons is necessary. I hope that one day textbook writers refrain from starting quantum-mechanics
textbooks with a historical overview overemphasizing these very confusing outdated ideas, which are
not only quantitatively but also qualitatively wrong, and finally these wrong ideas finally die out. It’s
high time for that, more than 90 years after the discovery of modern quantum theory.

2 Heuristics

TBD

3 Classical Maxwell theory in a vacuum

First we have to treat a minimum of classical theory of electromagnetic radition. In the following I use
Heaviside-Lorentz units with ħh = c = 1.
The Maxwell equations and with charge and current densities in this system read

~∇× ~E + ∂t
~B = 0, ~∇ · ~B = 0, (1)

~∇× ~B − ∂t
~E = ~j , ~∇ · ~E = %. (2)

Here ( ~E , ~B) are the electric and magnetic components of the electromagnetic field with respect to an
arbitrary inertial reference frame and (ρ, ~j ) the charge and current density, which are the sources of the
electromagnetic field.
The first two equations (1) are the inhomogeneous Maxwell equation, i.e., they are constraints on
the electromagnetic field, and these can be implemented by introducing a scalar and a vector potential.
Starting from the 2nd equation, we conclude that according to Helmholtz’s fundamental theorem of
vector calculus there must exist a vector potential for the magnetic field,

~B = ~∇× ~A. (3)

The first equation in (1) now reads
~∇× ( ~E + ∂t

~A) = 0, (4)

and, again using Helmholtz’s theorem, we can express the vector field under the curl as the gradient of
a scalar potential

~E + ∂t
~A=− ~∇Φ ⇒ ~E =−∂t

~A− ~∇Φ. (5)
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Writing ( ~E , ~B) in terms of the potentialsΦ and ~A, we can forget about (1) and just solve for the potentials
according to (2). Plugging in (3) and (5) for the electromagnetic field into (2), we find

~∇× ( ~∇× ~A)+ ∂ 2
t
~A+ ∂t

~∇Φ= ~j , (6)

− ~∇( ~∇Φ+ ∂t
~A) = %. (7)

Restricting ourselves to Cartesian coordinates, we can rewrite (6) as

� ~A+ ~∇(∂tΦ+ ~∇ · ~A) = ~j (8)

with the d’Alembert opertor
�= ∂ 2

t − ~∇ · ~∇= ∂
2

t −∆. (9)

Now the potentials are not unique for a given physical situation, which is completely determined by
the fields ( ~E , ~B) and sources (ρ, ~j ). Now, given the fields, instead of ~A in (3) we can use

~A ′ = ~A− ~∇χ ⇒ ~∇× ~A ′ = ~∇× ~A= ~B (10)

with an arbitrary scalar field χ . To fulfill also (5) we must also change the scalar potential to another
one Φ′ such that

~E =−∂t
~A ′− ~∇Φ′ =−∂t ( ~A− ~∇χ )− ~∇Φ

′ !=−∂t
~A− ~∇Φ. (11)

Thus we can set
Φ′ = Φ+ ∂tχ . (12)

The transformation from one set of potentials (Φ, ~A) to a new one (Φ′, ~A ′) according to Eqs. (10) and
(11) is called a gauge transformation.
So the solution of the equations (6) and (7) for the potentials is determined only up to a gauge transfor-
mation, i.e., the scalar field χ via (10) and (12) is arbitrary and indetermined by any equation. Since
its choice is completely arbitrary and without any effect to physically observable quantities, We can
simplify our task to find these solution by introducing an arbitrary gauge constraint on the potentials.
Looking at (8) suggests that a convenient choice is the Lorenz-gauge condition

∂tΦ+ ~∇ · ~A= 0, (13)

which decouples the Cartesian components of the vector potential, leading to separate wave equations
for each component

� ~A= ~j , (14)

and using (13) to substitute ~∇ · ~A=−∂tΦ one also obtains a wave equation for the scalar potential

�Φ= %. (15)

This choice of the Lorenz gauge is convenient, because it becomes manifestly Lorentz covariant in the
relativistic formulation of electrodynamics. For our purposes of quantizing the free radiation field
it has the disadvantage of not completely fixing the gauge, because obviously if we have found any
potentials (Φ, ~A), fulfilling the Lorenz-gauge condition (13) also the gauge transformed fields

Φ′ = Φ+ ∂tχ , ~A ′ = ~A− ~∇χ (16)
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fullfil this condition, provided that
�χ = 0, (17)

i.e., under the restriction that the gauge field χ solves the homogeneous wave equation.

For free fields, i.e., when setting %= 0 and ~j = 0 we can easily fix the gauge completely by demanding
the additional constraint

Φ= 0, (18)

because, if we have potentials (Φ, ~A) fulfilling the Lorenz-gauge condition (13) and the wave-equations
of motion (14) and (15) we can define a new set via the gauge transformation with the gauge field

χ =−
∫

dtΦ(t , ~x), (19)

because then

�χ =−∂tΦ+
∫

dt∆Φ, (20)

but because of % = 0 we have �Φ = 0 and thus �χ = 0. So we finally have only a two-component
vector potential left, because we must fulfill the Lorenz-gauge condition (13) and the additional gauge
constraint (18). These constraints we can write as the radiation-gauge constraints

Φ= 0, ~∇ · ~A= 0. (21)

This means we have only two independent components of the potentials left. The equations of motion
are given by the wave equation (14) with ~j = 0,

� ~A= 0. (22)

We can now write any solution of these equations for ~A in terms of a spatial Fourier transform

~A(t , ~x) =
∫

R3

d3~k
(2π)3

~a(t , ~k)exp(i~k · ~x). (23)

The radiation-gauge constraint (22) translates to

~k · ~a(t , ~k) = 0, (24)

i.e., all plane-wave modes for the vector potential must be transverse. For a given ~k 6= 0 we thus define
two orthonormal arbitrary polarization vectors ~ελ(~k), λ ∈ {1,2}, perpendicular to ~k

~ε1(~k)× ~ε2(~k) =
~k

|~k|
. (25)

So we can as well write (23) in the form

~A(t , ~x) =
2
∑

λ=1

∫

R3

d3~k
(2π)3

~ελ(~k)aλ(t , ~k)exp(i~k · ~x). (26)
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Finally we have to fulfill also the wave equation (22), which leads to

∂ 2
t aλ(t , ~k)+ ~k2aλ(t , ~k) = 0. (27)

The general solution for these mode equations is given by

aλ(t , ~k) =A(+)
λ
(~k)exp(−iω~k

t )+ (−1)λA(−)
λ
(−~k)exp(+iω~k

t ), ω~k
= |~k|. (28)

The conventional choice of (−~k) as the argument of A(−)
λ

and the pre-factor (−1)λ will become clear in
a moment. Then we have

~A(t , ~x) =
2
∑

λ=1

∫

R3

d3~k
(2π)3

~ελ(~k)exp(i~k · ~x)
�

A(+)
λ
(~k)exp(−iω~k

t )+ (−1)λA(−)
λ
(−~k)exp(+iω~k

t )
�

. (29)

Now substituting ~k→−~k leads to

~A(t , ~x) =
2
∑

λ=1

∫

R3

d3~k
(2π)3

h

~ελ(~k)A
(+)
λ
(~k)exp(−iω~k

t )exp(i~k · ~x)

+ (−1)λ~ελ(−~k)A
(−)
λ
(+~k)exp(−i~k · ~x)exp(+iω~k

t )
i

.

(30)

If we now adapt the additional condition

~ελ(−~k) = (−1)λ~ελ(+ ~K), (31)

which is compatible with (25) we can write

~A(t , ~x) =
2
∑

λ=1

∫

R3

d3~k
(2π)3

h

~ελ(~k)A
(+)
λ
(~k)exp(−iω~k

t )exp(i~k · ~x)

+ ~ελ(~k)A
(−)
λ
(+~k)exp(−i~k · ~x)exp(+iω~k

t )
i

.

(32)

Finally since the Maxwell fields and thus also the potential are real vector fields, we must have A(−)
λ
(~k) =

[A(+)
λ
(~k)]∗, and the final plane-wave representation of the general free vector potential reads

~A(t , ~x) =
2
∑

λ=1

∫

R3

d3~k
(2π)3

~ελ(~k)
�

Aλ(~k)exp[−i(ω~k
t − ~k · x)]+A∗λ(

~k)exp[+i(ω~k
t − ~k · x)]

�

. (33)

This can be interpreted as the superposition of continuously many harmonic oscillators labeled by the
wave vectors ~k ∈ R3 and polarization labels λ ∈ {1,2}.
The electric and magnetic field are now given by (5) and (3), respectively. With the radiation-gauge
constraints (21) we find

~E(t , ~x) =
∑

λ=1

∫

R3

d3~k
(2π)3

iω~k
~ελ(~k)

�

Aλ(~k)exp[−i(ω~k
t − ~k · ~x)−A∗λ(

~k)exp[+i(ω~k
t − ~k · ~x)]

�

, (34)

~B(t , ~x) =
∑

λ=1

∫

R3

d3~k
(2π)3

i~k × ~ελ(~k)
�

Aλ(~k)exp[−i(ω~k
t − ~k · ~x)−A∗λ(

~k)exp[+i(ω~k
t − ~k · ~x)]

�

. (35)
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Now we see that this is just the superposition of an uncountable infinite set of harmonic oscillators
labelled by λ and ~k.
For the quantization we need a formulation in terms of the canonical formalism for fields, i.e., in
terms of an action functional, from which the equations of motion occur via Hamilton’s principle
of least action. We start with the Lagrange formulation for our gauge-fixed vector potential. In this
formulation we have to take the fields as dynamical quantities, i.e., we have to interpret the position
arguments as labels for continuously many dynamical degrees of freedom. Thus the Lagrange function
is given in terms of a Lagrange density that is a function of the fields and the first derivatives of the
fields with respect to t and ~x. Since the field equations are linear, they must be quadratic in the fields ~A
and the spacetime derivatives. Since finally the Hamilton function, derived from the Lagrangian in the
canonical formalism, should be gauge invariant, the action should be gauge invariant. Now we can use
our above conventional treatment as a hint, how to build the Lagrangian, i.e., it should be a function

of the gauge-independent fields ~E = − ~̇A and ~B = ~∇× ~A. Further our equation of motion is simply
the homogeneous wave equation � ~A= 0, and thus there are indeed only derivatives of the field in the
Lagrangian. Last but not least it should be a scalar under rotations. This leaves the following form for
the Lagrangian

L = 1
2
~̇A2+α( ~∇× ~A)2. (36)

We have to determine the constant α such as to get the wave equation as the stationary point of the
action functional

S[ ~A] =
∫ t2

t1

dt
∫

R3
d3~xL . (37)

The variation of the Lagrange density reads

δL = ~̇A·∂tδ
~A+2α( ~∇× ~A)·( ~∇×δ ~A) = ~̇A·∂tδ

~A+2α
¦

~∇ · [δ ~A× ( ~∇× ~A)]+δ ~A · [ ~∇× ( ~∇× ~A)]
©

. (38)

Plugging this into the integral for δS the total divergence vanishes due to Gauss’s integral theorem,
i.e., we get after integrating the first term by part with respect to t , using that in Hamilton’s principle
δ ~A= 0 at t ∈ {t1, t2}

δS =
∫ t2

t1

dt
∫

R3
d3~x δ ~A ·

�

−∂ 2
t
~A+ 2α ~∇× ( ~∇× ~A)

�

. (39)

Now we still have to ensure the radiation-gauge constraint ~∇ · ~A as an additional condition, but then
~∇× ( ~∇× ~A) =−∆ ~A, and thus to make δS = 0 for fields fulfilling the homogeneous wave equation, we
have to set α=−1/2, because then

δS =
∫ t2

t1

dt
∫

R3
d3~x δ ~A ·

�

−∂ 2
t
~A+∆ ~A

� != 0 (40)

indeed implies � ~A= ∂ 2
t
~A+∆ ~A= 0.

Finally have

L = 1
2
~̇A2− 1

2
( ~∇× ~A)2. (41)
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The Hamilton density is given by

H = ~Π · ~̇A−L with ~Π=
∂L

∂ ~̇A
= ~̇A. (42)

Finally this gives

H = 1
2
~Π2+

1
2
( ~∇× ~A)2. (43)

4 Quantization of the free electromagnetic field

Now it is apparently easy to canonically quantize the free electromagnetic field, but there is one more
subtlety. In the previous section we have written down the Lagrangian (41) under the radiation-gauge

constraint that ~∇ · ~A = 0, and thus we cannot simply make ~A and ~Π = ~̇A operators and impose the
canonical commutation relations, but we must do this only for the two independent transverse com-
ponents. This transversality condition is, however, not so easy to impose directly on the fields. On
the other hand we can directly work with the Fourier decomposition (33) and just quantize by making
Aλ(~k) operators. For reasons, that will become clear in a moment, we also renormalize these Fourier
components and thus make the substitution

Aλ(~k)→
√

√

√

(2π)3

2ω~k

aλ(~k), (44)

where upright bold-face symbols indicate operator-valued quantities. Thus we make the ansatz

~A(t , ~x) =
2
∑

λ=1

∫

R3

d3~k
Æ

(2π)32ω~k

~ελ(~k)
�

aλ(~k)exp(−ik · x)+ a†
λ
(~k)exp(ik · x)

�

k0=ω~k

. (45)

Here we have used the abbreviation k · x = k0 t − ~k · ~x, borrowed from the relativistic four-vector
formalism. Now we have a set of independent operators aλ(~k) and have to find the commutation
relations for these field operators to be able to build the operator algebra.
We can assume to have the canonical commutation relations, before we have solved for the equations of
motion with the transversality constraint from fixing the gauge, i.e., we simply assume
�

A j (t , ~x1),Ak (t , ~x2)
�

=
�

Π j (t , ~x1),Πk (t , ~x2)
�

= 0,
�

A j (t , ~x1),Πk (t , ~x2)
�

= iδ j kδ
(3)(~x1− ~x2). (46)

Then we can write down the Hamiltonian, setting operators for the classical fields into the Hamilton
density (43)

H′ =
∫

R3
d3~x

1
2

h

~Π
2
+( ~∇× ~A)2

i

. (47)

We have written a prime to the Hamilton operator, because we shall see below that this is not yet the
final form, because we have a hidden operator-ordering problem, when we try to plug in the solution
(45) into the integrand in (47). We shall, however, see that the necessary solution of this operator order-
ing problem does not invalidate the following formal evaluation of the commutators for the operator
equations of motion of the field operators, which of course should be the same as the classical equations,
because we deal with linear equations of motion.
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Indeed, using the canonical commutation relations (46) and (47) one finds after a simple but lengthy
calculation that the Heisenberg equations of motion for the field operators indeed come out right,
i.e.,

∂t
~Π(t , ~x) =

1
i

�

~Π(t , ~x),H′
�

=− ~∇× [ ~∇× ~A(t , ~x)], ∂t
~A(t , ~x) =

�

~A(t , ~x),H
�

= ~Π. (48)

Now we have to solve this set of equations of motion under the radiation-gauge contraint

~∇ · ~A(t , ~x) = 0. (49)

and are led to (45). As we shall show now, this solution modifies the commutation relations (46) so that
they become compatible with this constraint. To this end we introduce the relativistic mode functions

~u
λ,~k
(t , ~x) =

1
Æ

(2π)32ω~k

~ελ(~k)exp(−iω~k
t + i~k · ~x), ω~k

= |~k|. (50)

They fulfill the orthonormality relations
∫

R3
d3~x ~u

λ,~k
(t , ~x) · i

←→
∂t ~uλ′,~k ′(t , ~x) = 0,

∫

R3
d3~x ~u∗

λ,~k
(t , ~x) · i

←→
∂t ~uλ′,~k ′(t , ~x) = δλλ′δ

(3)(~k − ~k ′),
(51)

where we define
A(t , ~x)

←→
∂t B(t , ~x) =A(t , ~x)∂t B(t , ~x)− [∂t A(t , ~x)]B(t , ~x). (52)

With these orthonormality relations we can reverse the Fourier decomposition (45)

aλ(~k) = i
∫

R3
d3~x ~u∗

λ,~k
(t , ~x)i

←→
∂t
~A(t , ~x). (53)

Using again the commutator relations (46) we find the commutators
�

aλ(~k),aλ′(~k
′)
�

= 0,
�

aλ(~k),a
†
λ′
(~k ′)

�

= δλλ′δ
(3)(~k − ~k ′).

(54)

This means that the quantized free electromagnetic field is indeed equivalent to an infinite uncountable
set of independent harmonic oscillators, for each transverse Fourier mode of the field labelled by λ and
~k.
Now we have to derive the commutator relations for the field-operator solutions (45) and their con-
sistency with (53), because to derive this latter equation, we have used the commutator relations (46),
which are only valid before solving the equations of motion including the radiation-gauge constraint.
Indeed, the only non-trivial commutator is

�

Ai (t , ~x),Π j (t , ~x ′)
�

=
�

Ai (t , ~x), Ȧ j (t , ~x ′)
�

= iδ (⊥)i j (~x − ~x
′), (55)

where we have used the commutation relations (54), plugging the mode decomposition (45) into the
arguments of the commutator and the relation

2
∑

λ=1

~εiλ(~k) · ε jλ(~k) = δi j −
ki k j

~k2
= P (⊥)i j (

~k). (56)
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The “transverse δ distribution” is then defined via the Fourier transformation

δ (⊥)i j (~x) =
∫

R3

d3~k
(2π)3

exp(i~k · ~x)P (⊥)i j (
~k). (57)

Here, only the second part of the projector (56) to the transverse wave modes,

δ (‖)i j (~x) =
∫

R3

d3~k
(2π)3

exp(i~k · ~x)
ki k j

~k2
. (58)

is non-trivial. To solve it we use
∆δ (‖)i j (~x) =−∂i∂ jδ

(3)(~x), (59)

which is easily derived from (58). From electrostatics we know, how to invert the Laplace operator:

δ (‖)i j (~x) =
∫

R3
d3~x ′

∂ ′i ∂
′
j δ
(3)(~x − ~x ′)

4π|~x − ~x ′|

=
∫

R3
d3~x ′δ (3)(~x − ~x ′)∂ ′i ∂

′
j

q
4π|~x − ~x ′|

=
∫

R3
d3~x ′δ (3)(~x − ~x ′)∂i∂ j

q
4π|~x − ~x ′|

= ∂i∂ j
1

4π|~x|
⇒ δ (⊥)i j (~x) = δi jδ

(3)(~x)− ∂i∂ j
1

4π|~x|
.

(60)

Now it is also clear that the commutation relation (56) is consistent with both the commutation rela-
tions (54) and the Heisenberg equations of motion (48), because the additional term δ (‖)i j in (55) com-
pared to the naive canonical commutators (46), because its contribution to the commutators cancel due
to the transversality of the solution (45).
Now we can build the Hilbert space of the quantized free electromagnetic field in the usual way, because
we know it already from the quantum mechanics of the harmonic oscillator. For each mode, defined by
the polarization label λ and the wave number ~k the energy eigenmodes of the corresponding harmonic
oscillator are the eigenvalues of the number operator

Nλ(~k) = a†
λ
(~k)aλ(~k). (61)

The eigenvalues of each number operator are the set N0 = {0,1,2, . . .}. What is counted here are oscil-
lator quanta, and these define in the modern sense of the here discussed quantum electrodynamics
what a photon is. A photon is given by its polarization λ and its wave number ~k and the corresponding
state is the corresponding eigenstate of the number operator (61).
We also know from quantum mechanics that a complete orthonormal eigenbasis for each mode is given
by the orthonormal vectors

|Nλ(~k)〉=

�

a†
λ
(~k)
�Nλ(~k)

q

Nλ(~k)!
|Ω〉 , (62)

where |Ω〉 is the ground state defined by

aλ(~k)|Ω〉= 0. (63)

10



Because of the commutation relations (54) number operators (61) with different λ and ~k commute, and
thus they can all be simultaneously diagonalized, i.e., have a common eigenbasis, the Fock basis

|{Nλi
(~k j )}i j 〉=

∏

i , j

h

a†
λi
(~k j )

iNλi
(~k j )

Ç

Nλi
(~k j )!

|Ω〉 , (64)

where i and j run over any countable set and |Ω〉, the “vacuum state” (representing the state that no
photons are present) is defined such that (63) should hold for any λ ∈ {1,2} and ~k ∈ R3. We also know
from the quantum theory of harmonic oscillators that a†

λ
(~k) creates a photon, i.e., applied to an Fock-

basis state (64) it enhances the occupation number Nλ(~k) by one, while aλ(~k), lowers it by one and
thus annihilates a photon. That’s why these operators are called creation and annihilation operators.
Due to the commutability of these operators it is clear that we cannot distinguish individual photons,
i.e., photons with the same λ and ~k are indistinguishable, and the order of the operator product in the
definition of (64) is irrelevant, because we used commutation relations to quantize the electromagnetic
field. The Fock state (64) obviously does not change when interchanging any two creation operators
in the product and thus photons are described as bosons.
There is still one more subtlety left to be discussed. The Hamilton operator (47) evaluates to

H′ =
2
∑

λ=1

∫

R3
d3~k

ω~k

2

�

a†
λ
(~k)aλ(~k)+ aλ(~k)a

†
λ
(~k)
�

. (65)

Here we have the problem that the ordering of the operators is ill defined, because of the singular
commutation relation for the annihilation and creation operators (54).
This can be cured somewhat by quantizing the electromagnetic field in a finite volume. Since we want
to describe moving plane waves we must impose periodic boundary conditions1. Taking a cube of
length L everything stays the same as above but the wave numbers are restricted to the discrete set

~k ∈ 2π
L

Z3. (66)

The singular commutation relations (55) become regularized, i.e., the last commutator now reads
�

aλ(~k),a
†
λ′
(~k ′)

�

= δλλ′δ~k,~k ′
, (67)

with an innocent Kronecker δ instead of the Dirac-δ distribution in (54). Then we can rewrite the
second term in the integrand in (65) as

aλ(~k)a
†
λ
(~k) =

�

aλ(~k),a
†
λ
(~k)
�

+ a†
λ
(~k)aλ(~k) = 1+ a†

λ
(~k)aλ(~k). (68)

Also the integral in (65) becomes a sum, the constant term in (68) still diverges since we sum over the
infinitely many wave numbers (66). On the other hand, so far we have only needed commutator rela-
tions with H to show that the Heisenberg equations of motion are compatible with the corresponding
classical equations of motion of the electromagnetic field, and thus we can simply omit these disturbing

1Indeed the very same formalism holds for quantization of the electromagnetic field in a cavity, where the photons are
confined due to ideal reflecing walls, leading to standing-wave modes.
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terms, i.e., we subtract an undefined diverging quantity proportional to the unit operator, which does
not change the commutation relations of operators with the Hamiltonian. Thus, instead of (65) we can
as well use the normal ordered Hamiltonian

H =: H′ :=
2
∑

λ=1

∫

R3
d3~kω~k

a†
λ
aλ(~k) =

2
∑

λ=1

∫

R3
d3~kω~k

Nλ(~k). (69)

This means that the occupation-number bosonic Fock states (62) are energy eigenvectors with

H
�

�

�{Nλi
(~k j )}i , j

¶

=





∑

i , j

ω~k j
Nλi
(~k j )





�

�

�{Nλi
(~k j )}i , j

¶

, (70)

i.e., each photon of wave number ~k contributes an amount of ω~k
= |~k| of energy to the total energy.

The colons in (69) denote normal ordering, i.e., in the operator product of creation and annihilation
operators we write all creation operators to the very left and all annihilation operators to the very
right. For any countable set of λ’s and ~k’s the order of the creation and annihilation operators among
themselves is irrelevant, because of the Bose-commutator relations for these operators.
From electrodynamics we also know that the electromagnetic field carries not only energy but also
momentum, and the momentum density is given by the Poynting vector ~S = ~E × ~B . In the spirit of
the canonical-quantization heuristics, we simply set field operators but warned by the example of the
Hamiltonian we fix the operator ordering in terms of the creation and annihilation operator by normal
ordering, i.e., we define the operator of total quantized field momentum as

~P=
∫

R3
d3~x : ~E(t , ~x)× ~B(t , ~x) :=

2
∑

λ=1

∫

R3
d3~k~kNλ(~k), (71)

i.e., the Fock states (64) are also eigenstates of the total field energy, and each photon with wave number
~k contributes an amount of momentum given by ~k.
It is tempting to give the photons a particle interpretation, but this is pretty misleading. Although
in the sense of energy and momentum the photons seem to behave like particles, i.e., for each wave
mode they contribute a certain amount of quantized energy and momentum when one considers the
occupation-number states as (generalized) states of a many-body system consisting of photons. With-
out going into the details, one must however say that this is problematic, because photons cannot be
localized in a very fundamental sense. One can show that it is not possible to define a position opera-
tor for a photon [Jor78], which obeys the usual Heisenberg-commutator relations for particles. This is
because the photon is “massless” in the sense of the dispersion relationω2

~k
−~k2 = 0. If one would inter-

pret ω~k
as energy and ~k as momentum of a (classical) particle in the naive sense of Einstein-deBroglie

quantization, this particle would be thus massless. But the above mentioned “no-go theorems” prevent
us from defining a position of a photon. As we shall demonstrate in the next section, it makes much
more sense to define the classical limit of the quantized electromagnetic field simply in the sense of
classical electromagnetic fields.

5 Thermal radiation (Planck radiation)

Historically the discovery of the quantum nature of radiation and only somewhat later of all kinds
of matter is due to problems occuring in thermodynamics and statistical physics to describe thermal
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radiation in thermal equilibrium. As we have stressed from the very beginning of this article, the
radiation field can be interpreted as an infinite set of harmonic oscillators in both the classical Maxwell
theory and in quantum electrodynamics. In the classical theory equilibrium of radiation is reached by
the persistent emission and absorption of radiation from the walls of a cavity, and this radiation field
can be described by a (countable) set of harmonic oscillators in thermal equilibrium. Now, according to
classical theory, any oscillator provides a mean energy of kBT according to the equipartition theorem,
where kB is the Boltzmann constant and T the temperature. In the following we shall use natural units
where besides ħh = c = 1 also kB = 1, i.e., we measure temperatures in units of energy (in atomic physics
the typical energy scale is electron volts, eV, in high-energy physics MeV, GeV or even TeV). In any
case since we have an infinite amount of harmonic oscillators the mean energy of the radiation field in
thermal equilibrium diverges. This is the famous UV catastrophe of classical thermodynamics applied
to the electromagnetic radiation field.
In our quantum-field theoretical framework, it is of course no problem to derive the correct energy
spectrum, i.e., Planck’s radiation law. To that purpose we use the box quantization, leading to a
discrete set of possible wave numbers of the quantized radiation field. Since we are interested in the
thermodynamic limit only, we can conveniently use the box with periodic boundary conditions, lead-
ing to the discretized wave numbers given by (66). The analysis for an ideally reflecting cavity, leading
to “rigid boundary conditions” and standing wave modes ends up with the identical result in the ther-
modynamic limit.
The appriate statistical operator for the here addressed situation is the canonical operator for the radi-
ation field,

R =
1
Z

exp(−βH), Z =Tr exp(−βH), (72)

where β is the Lagrange parameter in the maximum-entropy variational principle contraining the
mean radiation energy in the cavity to a certain value. As we shall see later, it is related to the temper-
ature of the cavity walls by β= 1/T .
For our purposes we calulate a somewhat generalized partition sum, which we shall use as a generating
functional for the mean energy per mode or the mean occupation number of photons in a given mode:

Z[α] =Trexp



−
∑

λ,~k

αλ(~k)Nλ(~k)



 . (73)

At the end of the calculation we also get the proper partition sum in (72) via

Z = Z[αeq] with αeqλ(~k) =βω~k
. (74)

To evaluate the trace, we conveniently use the occupation-number Fock states (64). For our discrete
set of wave numbers there is no quibble about how to calculate it:

Z[α] =
∏

λ,~k

∞
∑

Nλ(~k)=0

exp



−
∑

λ,~k

αλ(~k)Nλ(~k)



=
∏

λ,~k

1

1− exp[−αλ(~k)]
. (75)

Now it is more convenient to define the functional

Ω[α] = lnZ[α] =−
∑

λ,~k

ln
¦

1− exp[−αλ(~k)]
©

. (76)
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Now the mean equibrium number of photons in the field mode defined by (~k,λ) is after some simple
calculation given by

¬

Nλ(~k)
¶

=Tr[RNλ(~k)] =



−
δΩ[α]

δαλ(~k)





α=αeq

=
1

exp(βω~k
)− 1

= fB(ω~k
,T ) (77)

and the mean radiation energy in this mode by
¬

ελ(~k)
¶

=ω~k
fB(ω~k

,T ). (78)

Now we can take the thermodynamic limit by making the box large such that the sum over the wave
numbers in (76) can be approximated by an integral over a continuum of wave numbers. To this end
we just have to count, how many states are in a small wave-number volume d3~k these are

d3~kρ(~k) = d3~k
L3

(2π)3
= d3~k

V
(2π)3

. (79)

So we can calculate the partition sum as

Ω(β,V ) = lnZ =−
∑

~k,λ

ln
�

1− exp(−βω~k
)
�

'− 2V
(2π)3

∫

R3
d3~k ln

�

1− exp(−βω~k
)
�

=
π2V
45β3

. (80)

The factor 2 in front of the integral is from the sum over the polarization states, labelled by λ ∈ {1,2}.
Now we can evaluate all the “bulk properties” of the radiation with help of the canonical potential (80).
First of all we note that the total mean energy, thermodynamically the internal energy of radiation is
given by

U =

*

∑

λ,~k

ελ(~k)

+

=−∂βΩ(β,V ) =
π2V
15β4

. (81)

Now the internal energy is not yet expressed as a function of its natural thermodynamical variables.
According to the 1st Law of Thermodynamics we have

dU = T dS − PdV , (82)

where T is the temperature, S the entropy, and P the pressure of the radiation. So the natural variables
are the entropy and the volume. The entropy is given by the Gibbs-Duhem relation,

S =−Tr(R ln R) =Tr[R(lnZ +βH)] =Ω+βU . (83)

From this we find

dS = dV ∂VΩ+ dβ(∂βΩ+U )+βdU
(81)
= dV ∂VΩ+βdU . (84)

Solving for dU we get

dU =
1
β

dS −
∂VΩ

β
dV . (85)
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Comparing with the 1st Law (82) we find

T =
1
β

, P =
∂VΩ

β

(80)
=

π2

45β4
=

U
3

. (86)

Another useful thermodynamic potential is the free energy

F (T ,V ) =−TΩ(1/T ,V ) =U −T S. (87)

From this we find, using (82)

dF = dU − d(T S) =−SdT − pdV , (88)

and thus
S =−∂T F (T ,V ), P =−∂V F (T ,V ). (89)

According to (80) The entropy of the radiation is thus given by

S =+∂T [TΩ(1/T ,V )] = ∂T
π2V T 4

45
=

4π2T 3V
45

. (90)

6 The classical limit: Coherent states

TBD

7 Proof of the existence of photons I: beam-splitter experiments

8 Proof of the existence of photons II: quantum beats

TBD

9 Parametric downconversion

based on [HM85]
TBD

10 Bell tests with polarization-entangled

TBD

11 Outlook

TBD
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