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1 Introduction and conventions

In this manuscript we consider classical electrodynamics in a given general-relativistic background
spacetime. This is motivated by the aim to understand the three standard effects on electromagnetic
waves within classical electrodynamics rather than the pretty hand-waving “naive photon picture” used
in many textbooks. These three effects are

• the deflection of light by the Sun, which was one of the first confirmations of GR by the fa-
mous solar-eclipse expedition by Eddington et al in 1919, confirming Einstein’s prediction of the
deflection angle from his final version of the theory of Nov. 1915.

• the gravitational red shift of spectral lines. This has also been predicted by Einstein in his first
papers, and the famous “Einstein tower” in Potsdam was an observatory dedicated explicitly to
confirm the gravitational red-shift by spectroscopy of the light of the Sun. The accuracy for this
has not been sufficient at the time. The effect of gravitational red (or in this case rather blue shift)
has then been successfully observed for the first time using γ -rays and the Mössbauer effect in
the gravitational field of the Earth.

• the redshift-distance relation of far-distant objects (Hubble-Lemaitre Law), discovered famous-
ly by Hubble and has been predicted by Lemaitre based on the cosmological standard model
described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric as a description of the
large-scale structure of spacetime.

As it turns out, all that’s needed is the formulation of the electrodynamics in a static spacetime. As
we shall see, also the case of the FLRW metric, which is not a static solution but describes “Hubble
expansion”, can be deduced from this simpler static case.
We follow the sign conventions of [ABS75, Fli12]: The signature of the metric is (+,−,−,−) = (1,3)
(west-coast convention), i.e., in flat Minkowski spacetime in Lorentzian coordinates, the metric com-
ponents are given by (ηµν ) = diag(1,−1,−1,−1).
The Christoffel symbols are then given by

Γ ρµν = Γ
ρ
νµ =

1
2
(gρσ∂µ gσν + ∂ν gσµ− ∂ρ gµν ), (1)

where the usuala Einstein summation convention applies (over a pair of two equal indices, one upper
and one lower, one has to sum from 0 to 3), defining the covariant derivatives of vector fields via

∇µV ν = ∂µV ν + Γ νµρV ρ, ∇µVν = ∂µVν − Γ
ρ
µνVρ. (2)
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The Riemann curvature tensor is given via the Christoffel symbols by

Rαµβγ = ∂γ Γ
α
µβ− ∂βΓ

α
µγ + Γ

α
γνΓ

ν
µβ− Γ

α
βνΓ

ν
µγ . (3)

Then for any vector field’s covariant components one has

(∇µ∇ν −∇ν∇µ)Vρ =−RρσµνV
σ . (4)

The Ricci tensor is then defined by contraction of the 1st with the 3rd index, Ricci-Tensor

Rµν = Rνµ = Rαµαν . (5)

One more contraction leads to the Ricci scalar,

R = Rµµ. (6)

With these sign conventions the Einstein field equations of the gravitational interaction reads

Gµν := Rµν −
R
2

gµν =−κTµν , (7)

where Tµν = Tνµ is the energy-momentum tensor of matter and radiation. Further κ= 8πG/c4.

Taking the trace of (7) shows that the Einstein equations can also be written as

Rµν =−κ
�

Tµν −
1
2

T ρ
ρ gµν

�

. (8)

Finally the Bianchi identity,
∇µGµν = 0, (9)

implies that the covariant divergence of the energy-momentum tensor has to vanish:

∇µTµν = 0. (10)

Finally we define the Levi-Civita symbol such that

ε0123 =+1, ε0123 =−1. (11)

Othewise both εµνρσ and εµνρσ are completely anti-symmetric under exchange of any two indices. The
components of the Levi-Civida “pseudo-tensor” are then defined by

∆µνρσ =
1
p−g

εµνρσ , ∆µνρσ =
p

−gεµνρσ with g = det(gµν ), (12)

where g = det(gµν )< 0.
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2 Electrodynamics in General Relativity

To generalize the classical electrodynamics from Minkowski space to the general relativistic spacetime
model, we make use of the heuristic rule to write covariant derivatives∇µ acting on tensor components
wrt. arbitrary coordinate bases for the partial derivatives ∂µ in Minkowski spacetime in Lorentzian
coordinates. This is possible without ambiguities as long as we deal with equations, where only first
derivatives occur, because then there is no uncertainty concerning the order of the covariant derivatives,
which is not determined from the expressions in Minkowski spacetime, because the partial derivatives
commute. Thus in electrodynamics we just use the Maxwell equations for the field-strength tensor,
which are of first order. The inhomogeneous Maxwell equations read, using Heaviside-Lorentz units
for the electromagnetic quantities

∇µF µν =
1
c

j ν , (13)

Here F µν are the contravariant components of the antisymmetric Faraday tensor, and j ν the electric
four-current density. Because of the antisymmetry F µν =−F νµ the covariant divergence in (13) can be
written as

1
p−g

∂µ(
p

−g F µν ) =
1
c

j ν . (14)

The homogeneous Maxwell equations read

∇µFρσ +∇ρFσµ+∇σFµρ ≡ ∂µFρσ + ∂ρFσµ+ ∂σFµρ = 0. (15)

This can be expressed with the dual field-strength tensor

F̃µν =∆µνρσF ρσ =
p

−gεµνρσF ρσ (16)

as
∇µF̃µν =
p

−gεµνρσ∇
µF ρσ = 0. (17)

Here, the first equality follows because the covariant derivatives of the metric components vanish and
the second, because the contraction with the Levi-Civita symbol reproduces the left-hand side of Eq.
(15).
Because the covariant derivatives in (15) can be written with the partial derivatives, as in electrody-
namics in Minkwoski space these homogeneous Maxwell equations imply the existence of a vector
potential, i.e., that the Faraday tensor can be written as

Fµν = ∂µAν − ∂νAµ =∇µAν −∇νAν , (18)

where the second form follows from

∇µAν = ∂µAν − Γ
ρ
µνAρ (19)

via the symmetry of the Christoffel symbols under commutation of its lower indices, Γ ρµν = Γ
ρ
νµ, and

∇µAν = ∂µAν − Γ
ρ
µνAρ. (20)

Further it is clear that the four-potential is defined only up to a gradient of a scalar field, i.e., the gauge-
transformed four-potential,

A′µ =Aµ+ ∂µχ =Aµ+∇µχ , (21)
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leads to the same Faraday tensor (18) as Aµ.

As in Minkowski space fixing the gauge (partially) by imposing the Lorenz-gauge constraint,

∇µAµ =
1
p−g

∂µ(
p

−gAµ) != 0 (22)

simplifies the field equations for Aµ. Since (15) is satisfied identically by using (18), the remaining inde-
pendent field equations are the inhomogeneous Maxwell equations (13). Using (18) in (13) leads to

gαβ∇αFβν = gαβ∇α(∇βAν −∇νAβ) = jν . (23)

Cf. (4) we have
(∇α∇ν −∇ν∇α)Aβ =−RβρανA

ρ, (24)

and contraction with gαβ yields

jν = gαβ∇α(∇βAν −∇νAβ) (25)

=□Aν − gαβ(∇α∇ν −∇ν∇α+∇ν∇α)Aβ (26)
(4,5)
= □Aν −∇ν∇αAα+RνγAγ (27)

(22)
= □Aν +RνγAγ . (28)

Here we have used the Lorenz-gauge condition (22) only in the very last step. In general gauge (27)
holds. As we see, we’d not been able to derive this equation from the equation in Minkowski spacetime,
because the covariant derivatives do not commute, and a simple substitution of the partial derivatives
by covariant derivatives is ambigous. Indeed, starting with the equation in Minkowski space in the form

□Aν − ∂ν∂αAα = jν (valid only in Minkowski space in pseudo-Cartesian coordinates!) (29)

and just making ∂µ→∇µ, we’d have missed the additional term in (27) with the Ricci tensor. As the
above derivation shows, without this term electromagnetic gauge invariance would get lost and the term
related to general-relativistic space-time curvature must necessarily occur in the Maxwell equations
written as 2nd-order differential equations for the four-potential.

3 Conformal invariance of the free Maxwell equations

The free Maxwell equations are invariant under conformal transformations, i.e., given an arbitrary
function λ= λ(qµ), setting

gµν = λ g̃µν , Aµ = Ãµ, (30)

it follows from (18)
Fµν = ∂µAν − ∂µAν = ∂µÃµ− ∂νÃµ = F̃µν . (31)

Further we have
gµν =

1
λ

g̃µν , (32)

because (gµν ) is the inverse matrix of (gµν ). Thus we get

F µν = gµρ g νσFρσ =
1
λ2

g̃ νσ F̃ρσ =
1
λ2

F̃ µν , (33)
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where the usual tensor operations like lowering and raising indices for the transformed tensor com-
ponents have to be always done with g̃µν or g̃µν , respectively.

Evidently the homogeneous Maxwell equations (15) hold for F̃µν if and only if they hold for Fµν since
these equations are entirely independent of the metric.
For jν = 0 also for the free Maxwell equations (14) we have

1
p−g

∂µ(
p

−g F µν ) =
1

λ2
p

− g̃
∂µ(
p

− g̃ F̃ µν ) = 0. (34)

Multiplication by λ yields

0=∇µF µν =
1
p

− g̃
∂µ(
p

− g̃ F̃ µν ) = ∇̃µF̃ µν , (35)

where ∇̃µ is the convariant derivative, which is defined by the Christoffel symbols via g̃µν .

For electrodynamics in the Friedmann-Lemaître-Robertson-Walker spacetimes of cosmology this im-
plies a tremendous simplification, because by a specific choice of coordinates (qµ) = (τ,χ ,ϑ,ϕ) the
metric can be written as

(gµν ) = ã2(τ)diag(1,−1,−S2
K (χ ),−S2

K (χ ) sin
2ϑ), (36)

i.e. it is given by the conformal transformation of the static metric

g̃µν = diag(1,−1,−S2
K (χ ),−S2

K (χ ) sin
2ϑ. (37)

The functions SK are defined by

SK (χ ) =











sinχ für K = 1,
χ für K = 0,
sinhχ für K =−1.

(38)

Thus free electromagnetic fields can be written in terms of Fµν = F̃µν , which is independent of the spe-
cific form of the scale parameter a(τ). Particularly for K = 0 (37) is the Minkowski metric, written in
spatial spherical coordinates, (χ ,ϑ,ϕ). All solutions of the free Maxwell equations in Minkowski space
are thus also solutions in all flat FLRW spacetimes. Particularly the plane waves Aµ ∝ exp(−ikµxµ)
with kµkµ = 0 are solutions. In the next Sect. we show that this also holds approximately for the
non-flat FLRW metrics, i.e., for K ∈ {−1,+1}.

4 The eikonal approximation

Exact solutions of the free Maxwell equations for K ̸= 0 are not as easy to find as in Minkowski space
since the equations for Aµ do not separate into wave equations for the components. One solution is the
generalization of the multipole expansion to a large class of spacetimes defined by exact solutions of
the Einstein field equations (such as Schwarzschild, Kerr, FLRW spacetimes) can be found in [CK74].
To derive the cosmological Hubble-Lemaître redshift of spectral lines of the electromagnetic waves
emitted by stars, supernovae, galaxies, etc, it is however sufficient to use the eikonal approximation.
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This corresponds to the approximation of wave optics by ray optics and is valid far away from the
source and from all obstacles, i.e., for L ≫ λ, where λ is the typical wave length of the considered
electromagnetic wave and L the typical scales across which quantities like the index of refraction con-
siderably change. For a detailed treatment of the eikonal approximation in flat Minkowski spacetime,
see e.g., [Som54, LL96]. In GR another typical length scale is also the curvature scalar, R, i.e., we also
have to assume that λ≪ R. Then we introduce the small parameter

ε=
λ

min(L, R)
≪ 1 (39)

and make the ansatz for the four-potential,

Aµ =Re
�

[aµ0 + aµ1 ε+O (ε
2)]exp
�

−i
ψ

ε

��

. (40)

The parametric depenence of the phase on ε results from k = 2π/λ. For the following calculation we
can first calculate with the complex exponential without taking its real part, which is allowed as long as
we only deal with linear expressions in the Aµ and its derivatives with respect to the real coordinates,
qµ.
First we impose the Lorenz gauge condition (22). With our ansatz (40) we find

∇µAµ =
1
p−g

§

∂µ[
p

−g (aµ0 + εa
µ
1 )]−

i
ε
(aµ0 + εa

µ
1 )∂µψ
ª

exp
�

−i
ψ

ε

�

= 0. (41)

In leading order O (1/ε) we find
aµ0 ∂µψ= 0. (42)

Expanding the phase ψ in a neighborhood of an arbitrary spacetime point to linear order in ε we find
that

kµ = ∂µψ. (43)

The wave vector changes via the curvature of spacetime in a similar way as it changes for an electroma-
gnetic wave in a dispersive medium with a spacetime dependent index of refraction. This is the case
particularly for electrodynamics in spacetimes that are conformal to a static spacetime as the FLRW
spacetimes, for which gµν = λ g̃µν , where the g̃µν do not depend on the temporal coordinate and which
can be brought in a form such that g0 j = g j 0 = 0 for j ∈ {1,2,3} by a choice of the coordinates (qµ)
[LL96].
Plugging now our ansatz (40) into the wave equation (28), we find that the leading order O (1/ε2) origi-
nates from taking the 2nd derivatives of the exponential factor contained in the generalized d’Alembert
operator □. This leads to

kµkµ = gµν (∂µψ)(∂νψ) = 0. (44)

As expected, the wave vector turns out to be lightlike. Of course we can cancel the scale factor ã in
this equation, as expected from the conformal invariance of the free Maxwell equations, i.e., (44) is
equivalent to

g̃µν (∂µψ)(∂νψ) = 0. (45)

Taking the covariant derivative of (44) we find

0=∇µ(kνk
ν ) = 2kν∇µkν = 2kν∇µ∇νψ= 2kν∇ν∇µψ= 2kν∇νkµ. (46)
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Now the normal vectors of the hypersurfaces of constant phase, ψ = const, define the Light rays
with the tangent vector kµ. Parametrizing the light ray as qµ(λ), where λ is an arbitrary world-line
parameter, we have, choosing an appropriate normalization of λ,

q̇µ = kµ. (47)

Here the dot means a derivative with respect to λ. From (46) it follows that the light ray is a null
geodesic, because

D2qµ

Dλ2
=

Dkµ

Dλ
= q̇ ν∇νk

µ (47)
= kν∇νk

µ (46)
= 0. (48)

This means that the often used “naive photon picture” for the light propgation in curved spacetime is
indeed correct in the sense of the eikonal approximation of classical wave optics, i.e., the light rays can
be interpreted as trajectories of massless particles.
The geodesic equation can be derived from the action principle with the action

S[q] =
∫

dλL=
1
2

∫

dλ g̃µν q̇
µq̇ ν . (49)

Since the Lagrangian L does not explicitly depend on the world-line parameter λ the “Hamiltonian”,

H = q̇µ pµ− L= L= const with pµ =
∂ L
∂ q̇µ

, (50)

is conserved for the null geodesic, obeying q̇µq̇µ = 0, which thus can be imposed as the appropriate
constraint for the motion of a massless particle, and λ is an affine parameter for this null geodesic.
Since further g̃µν is a static metric, i.e., τ is a cyclic coordinate, the corresponding canonical momentum
is conserved along the light ray:

p0 =
∂ L
∂ q̇0

= k0 =: ω̃ = const. (51)

We are now interested in the radial light rays, originating from a far-distant source. So we set ψ =
ψ(τ,χ ). With the metric (37) the eikonal equation (45) then simplifies to

(∂τψ)
2− (∂χψ)

2 = 0. (52)

Because of (51) and because k0 = k0 =ω, we have

∂χψ=−∂τψ=−ω̃, (53)

where we have chosen the negative square root, because we consider the case that the observer is at χo
and the light source at χ = 0. The light source itself we consider as radially symmetric with a surface at
χs such that χ2≪ χ , so that the eikonal approximation is fullfilled at the position χo of the observer.
Now (53) is solved by

ψ(τ,χ ) = ω̃(τ−χ ), (54)

which indeed describes a light wave moving outwards from χ = 0 to χ = χo . However, usually we
describe the observers as co-moving observers. For these the FLRW metric is given in the form

(gµν ) = diag(1,−a2(t ),−a2(t )S2
K (χ ),−a2(t )S2

k sin2ϑ), (55)
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where

dτ =
dt

a(t )
, a(t ) = ã[τ(t )]. (56)

Thus the frequency with respect to the co-moving coordinates is

ω = ∂tψ=
dτ
dt
∂τψ=

dτ
dt
ω̃

(56)
=

ω̃

a(t )
. (57)

Thus along the radial light beam we have

ωa = ω̃ = const. (58)

A light signal that is emitted at time te at χ = 0 arrives the observer at the later time to at the obser at
χ = 0. With (58) we have for the corresponing frequencies at emission and observation

ωe a(te ) =ωoa(to) ⇒
ωe

ωo
=

a(to)
a(te )

= 1+ z. (59)

Since the universe expands, i.e., a(to) > a(te ) we have ωe > ωo , i.e., the spectral lines are red-shifted
compared to their properties at emission. Thus, interpreted within these comoving coordinates, i.e.,
for observers comoving with the “cosmic substrate”, the Hubble-Lemaître redshift is not a Doppler
effect but is solely due to the time-dependence of the scale paratmeter a(t ).
For an observer on Earth this is not true, because as the measurement of the dipole component of the
dependence of the temperature of the cosmic microwave background on the direction of observation
shows, we are moving with about 370 km/s wrt. to the rest frame of the cosmic microwave background
which defines the standard coordinates for co-moving observers for the FLRW spactime (55).
To find the time to we have to solve the equation for the radial null geodesics, for which we can use the
first integral (50)

ds2 = dt 2− a2dχ 2 = 0, (60)

i.e.,

χo −χs ≃ χo =
∫ to

te

dt
a(t )

= (τo −τe ). (61)

For a given a(t ), which is derived from the Friedmann equations for a given “energy content” of the
universe, we can derive to for a given te .
The frequency shift for the more general case, where both the observer and the source are moving
wrt. the co-moving frames of reference (i.e., the local rest frames of the cosmic micro-wave background
radition) is given by writing the frequencies in a manifestly covariant form as ωe = uµe kµ(te ,χs ) and
ωo = uµo kµ(to ,χo), where

k0 = kt =
∂ ψ

∂ t
=
∂ ψ

∂ τ

dτ
dt
=

ω̃

a(t )
, k1 = kχ = ∂χψ= ω̃, k2 = k3 = 0. (62)

Thus we have in manifestly covariant form for a moving source and observer

ωe

ωo
=

keµuµe
koµuµo

. (63)
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For a co-moving observer and co-moving source we have (uµe ) = (u
µ
o ) = (1,0,0,0) and (62) leads again to

(59). For the general case of an arbitrarily moving source and observer (63) describes both the Hubble-
Lemaître redshift and the Doppler effect due to the motion of source and observer wrt. the local rest
frames of the cosmic microwave background radiation.
Only for not too far distant light sources one can approximately reinterpret the Hubble-Lemaître reds-
hift as a kind of Doppler effect. To see this we expand the denominator in (59) as

1+ z =
ωe

ωo
=

a(to)
a(te )
≃

a(to)
a(to)−∆t ȧ(to)

≃ 1+∆t ȧ(to)/a(to) = 1+Ho∆t , (64)

where Ho = ȧ(to)/a(to) is the Hubble constant and ∆t = to − te . For this expansion to be valid we
must have z ≃ Ho∆t ≪ 1. On the other hand the distance between the light source and the observer
is, according to the FLRW metric

r (to) = a(to)χo ⇒ vo = ȧ(to)χo =Hoa(to)χo . (65)

Due to (61) we have

χo =
∫ to

te

dt
a(to)
≃

to − te

a(to)
=
∆t

a(to)
(66)

and thus because of (65)
vo ≃Ho∆t . (67)

In the same order of approximation this is indeed also the Doppler effect in Minkowski spacetime for
an observer moving radially away from the light source with velocity vo :

1+ z =
ωe

ωo
=

√

√

√

1+ vo

1− vo
≃ 1+ vo , (68)

and this is in accordance with (64) due to (67), but this interpretation is valid only for z≪ 1.

5 Luminosity distance

Another important application of the above theory of the free electromagnetic field is the definition
of the luminosity distance, which relates the measured energy-flux density of radiation from light
sources of known luminosity (“standard candles”) with the distance of the source from the observer. In
the context of cosmology important standard candles are the type Ia supernovae. In the following we
shall derive the relation between the observed brightness and the distance parameter χ of the FLRW
metric.
To that end we need the energy-momentum tensor of the free electromagnetic field. In GR it is found
from the action functional of the free electromagnetic field,

S[Aµ] =−
1
4

∫

d4q
p

−g FµνF
µν (69)

by variation with respect to the metric gµν at fixed Aµ. According to (31) under this variationδFµν = 0.
Then we need the variation of g = det(gµν ). Since the matrix (gµν ) is the inverse of (gµν ) we have

δ g =
∂ g
∂ gµν

δ gµν = gδ gµν gµν (70)
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and thus
δ
p

−g =− 1
2
p−g

g gµνδ gµν =
1
2

p

−g gµνδ gµν . (71)

For the variation of F µν we also need the variation of gµν . Because of gµν g νρ = δρµ we have

gµνδ g νρ =−δ gµν g νρ. (72)

Using the antisymmetry of Fµν with this we get

δF αβ = δ(gµα g νβFµν = (δ gµα g νβ+ gµαδ g νβ)Fµν = 2δ gµα g νβFµν =−2F µβ g ναδ gµν . (73)

The energy-momentum tensor T µν of any fields with an action S is given by

δS =−1
2

∫

d4q
p

−gT µνδ gµν . (74)

Using (71) and (72) in the variation of the action for the electromagnetic field (69), after some calculation
one obtains

T µν = F µαFα
ν +

1
4

FαβF αβ gµν . (75)

In the leading order of the eikonal approximation (44) in conformal coordinates the solution of plane
waves propagating in radial direction reads

Aµ = a0µ cos[ω̃(τ−χ )], (76)

Since kµaµ0 = 0 we choose the orientation of the spatial reference frame such that

(a0µ) = (0,0,a0, 0). (77)

In this order of the eikonal approximation we can assume that a0 = const. After some calculations (cf.
the Mathematica notebook in Appendix A)

T̃ µν = ε̃(τ,χ )ũµ ũν with ũµ = (k̃µ/ω̃) = (1,−1,0,0) (78)

with the scalar field

ε̃(τ,χ ) =
a2

0ω̃
2 sin2[ω̃(τ−χ )]
ã2(τ)S2

K (χ )
. (79)

As can be easily checked, this approximation fulfills the local energy-conservation law,

∇µT̃ µν = 0. (80)

Further, because of T̃ µν ∝ kµkν , the trace gµν T̃
µν = 0 as also follows from Noether’s theorem applied

to the conformal invariance of the free electromagnetic field.
As usual due to the rapid oscillations of the sin2 factor only the averaged intensity




T 00
�

is observable.
Since over one period of the wave ã(τ) can be considered as constant, we only need to average over the
sin2 factor,

〈ε̃(τ,χ )〉=
a2

0ω̃
2

ã2(τ)S2
K (χ )

1
τ0

∫ τ0

0
sin2[ω̃(τ+χ )] =

a2
0ω̃

2

2ã2(τ)S2
K (χ )

. (81)
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Since it is a scalar field, we have ε̃(τ,χ ) = ε(t ,χ ), and thus for a co-moving observer

〈ε(t ,χ )〉=
a2

0ω̃
2

2a2(t )S2
K (χ )

(82)

and

(uµ) =
�

∂ qµ

∂ q̃ ν
ũν
�

= (1/a, 1/a2, 0, 0) (83)

and thus for the energy density




T 00�= 〈ε(t ,χ )〉 (u0)2 =
a2

0ω̃
2

2a4(t )S2
K (χ )

. (84)

Because of T 0µT 0ν gµν = 0 this is also the magnitude of the energy-flux density (or Poynting vector).
So the total radiation power at the source of the emission at χs is

Pe =
a2

0ω̃
2

2a4(te )S2
K (χs )

4πa2(te )S
2
K (χs ) =

4πa2
0ω̃

2

2a2(te )
. (85)

Here 4πa2(te )S
2
K (χs ) is the surface of the sphere t = te = const, χ = χs = const at the source. This

implies a2
0ω̃

2 = 2a2(te )Pe/(4π) and thus the energy-flux density at the place of observation at χ = χo
is

L=



T 00�

t=to ,χ =
Pe a2(te )

4πa4(to)S2
K (χo)

. (86)

With (59) we can express a(te ) with the red-shift parameter z,

L=
Pe

4π(1+ z)2a2(to)S2
K (χ )

. (87)

The luminosity distance dL is then defined by

L=
Pe

4πd 2
L

, (88)

i.e., as the distance of an observer from a spherically symmetric light source with radiation power P0
in flat Minkowski space resulting in the observed intensity (87), which leads to

dL = (1+ z)a(to)SK (χ ). (89)

To express a(to) in terms of the redshift z, one needs a specific cosmological model defined by a postu-
lated “matter content” of the universe and the solution of the corresponding Friedmann equations.

6 Electrodynamics in Schwarzschild spacetime

Another important application of the electrodynamics in general relativity are the historically import-
ant empirical tests of general relativity in our solar system. Here one takes the Schwarzschild metric
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due to the presence of the Sun to define the spacetime, which reads in terms of the Schwarzschild coor-
dinates (t , r,ϑ,ϕ)

ds2 = (1− 2m/r )c2dt 2− (1− 2m/r )−1dr 2− r 2(dϑ2+ sin2ϑdϕ2). (90)

Here m = GMSun/c2 = rS/2. Here we use this spacetime for r > rS outside of the Sun, for which
rS ≃ 3 km. The Schwarzschild coordinates have a coordinate singularity at r = rS, which defines
an event horizon. In the following we shall consider the gravitational red shift of spectral lines, the
deflection of light in the gravitational field of the Sun (which was the first confirmation of a generic
prediction of GR by Einstein from the solstice expeditions in 1919), and Shapiro delay.
The Lagrangian determining the lightlike geodesics reads

L=
1
2

�

�

1− 2m
r

�

c2 ṫ 2−
�

1− 2m
r

�−1
ṙ 2− r 2ϑ̇2− r 2 sin2ϑϕ̇2

�

. (91)

6.1 Gravitational redshift

For the demonstration of the gravitational redshift, i.e., of the shift of the spectral lines of light emitted
from the Sun, it is sufficient to note that

pt = k0 =
∂ L
∂ ṫ
= c2
�

1− 2m
r

�

ṫ = const, (92)

because L does not explicitly depend on t , i.e., ∂t L= 0.
For an observer at rest on Earth, ro = 1 AU= const,

uµ =
�

1− 2m
r

�−1/2
(1/c , 0, 0, 0). (93)

This implies that

ω = kµuµ =
1
c

k0

�

1− 2m
r

�−1/2
. (94)

This implies that for r = re, where re denotes the radial coordinate localizing the photosphere of the
Sun

ωe =
1
c

k0

�

1− 2m
re

�−1/2

(95)

and for the observer on Earth

ωo =
1
c

k0

�

1− 2m
ro

�−1/2

(96)

which implies that
ωo

ωe
=

√

√

√
1− 2m/re

1− 2m/ro
. (97)

Thus one expects a red shift (since re < r o). Unfortunately this red shift of spectral lines of the sunlight
could not be observed yet, although already the famous Einstein tower at Caputh close to Potsdam was
specifically erected to measure this prediction of GR.
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The gravitational redshift could, however, be observed on Earth using a laser and Mössbauer spectros-
copy for the first time by Pound and Rebka in 1959. Here, of coarse m = mEGME/c2 = g r 2

E/c2 (with
g ≃ 9.81m/s2), and we can write re = rE+ h expand (97) to linear order in h:

ωo

ωe
= 1− z =

√

√

√

1− 2g rE/c2

1− 2g r 2
E/(rE+ h)

≃ 1−
g h
c2

. (98)

This prediction has been confirmed by Pound and Rebka with an accuracy of about 10% being refined
to 1% in 1964.

6.2 Deflection of light on the Sun

One of the first tests of GR, leading to Einstein become a celebrity in 1919, was the confirmation of
his prediction of the deflection of light due to the gravitational field of the Sun. Here we have find
the null geodesic for a light ray moving non-centrically. We use the Lagrangian (91). Due to spherical
symmetry it is clear that the motion will be in a plane due to conservation of the corresponding “angular
momentum”. This implies that we can set ϑ = 0 by choosing the angular coordinates according to the
initial conditions in this way. To see that this is indeed compatible with the equations of motion, we
evaluate the Euler-Lagrange equation for ϑ:

pϑ =
∂ L
∂ ϑ
=−r 2ϑ̇, ṗϑ =

∂ L
∂ ϑ
=−r 2 sinϑ cosϑϕ̇2. (99)

Indeed this is compatible with ϑ =π/2= const.
This reduces the Lagrangian to

L=
1
2

�

�

1− 2m
r

�

c2 ṫ 2−
�

1− 2m
r

�−1
ṙ 2− r 2ϕ̇2
�

. (100)

Since L is independent of t and ϕ the corresponding canonical momenta,

pt =
∂ L
∂ ṫ
=
�

1− 2m
r

�

c2 ṫ = const, (101)

pϕ =
∂ L
∂ ϕ̇
=−r 2ϕ̇ =−h = const. (102)

Finally we use that H = L = const = 0, because we look for null geodesics. Using (101) and (102) in
(100) then yields

p2
t

c2

�

1− 2m
r

�−1
−
�

1− 2m
r

�

ṙ 2− h2

r 2
= 0. (103)

Multiplying with (1−2m/r ) and introducingϕ as the independent variable instead ofλ, as well u = 1/r
gives

p2
t

c2
− h2u ′2− h2u2(1− 2mu) = 0, (104)

where u ′ = du/dϕ. Taking the derivative of this equation with respect to ϕ and using that u̇ ̸= 0 for
our problem, we find

u ′′+ u = 3mu2. (105)
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Let D = rmin the “perihelion distance” of the light ray from the Sun and using that ε = 3m/rmin =
3mumax≪ 1 for a light ray just gracing the rim of the Sun shows that the right-hand side of Eq. (105)
is a small perturbation, we expand the solution in powers of ε,

u = u0+ εu1+O (ε
2). (106)

Plugging this into (105) we get in leading order of ε

u ′′0 + u0 = 0 ⇒ u(ϕ) = umax sinϕ. (107)

This is a straight line as to be expected from the limit m = 0, where the Schwarzschild metric just
becomes the Minkowski metric with no gravitational field present.
For the first-order correction we find

u ′′1 + u1 =
ε

umax
u2

0 = umax sin2ϕ =
1
2

umax[1− cos(2ϕ)]. (108)

The general solution of this inhomogeneous linear differential equation is

u1(ϕ) =
1
2

umax+
1
6

cos(2ϕ)+Acosϕ+B sinϕ. (109)

The constants of integration, A and B , are determined by making u1(π/2) = 0 and u̇1(π/2) = 0, so that
at ϕ =π/2 we have u(π/2) = u0(π/s) = umax. This finally leads to

u(ϕ) = umax

�

1− ε
3

�

sinϕ+
ε

2
umax

�

1+
1
3

cos(2ϕ)
�

. (110)

For r → ∞, i.e., u → 0, the angle ϕ = δ ≪ 1 and thus from (110) with sinδ ≃ δ = O (ε) and
cos(2δ)≃ 1+O (ε2). So we get

δ =−2ε/3=−2mumax. (111)

The total deflection thus is
2δ =−4mumax =−

4m
rmin
≃ 1.75′′, (112)

where we used m = rS/2= 1.5 km and rmin = RSun = 6.963 · 106 km.
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A The energy-momentum tensor of the free electromagnetic field

Luminosity distance in the FLRW 

spacetime

FLRW Metric

In[1]:= q = {tau, chi, th, ph};

In[2]:= g = atil[tau]^2

{{1, 0, 0, 0}, {0, -1, 0, 0}, {0, 0, -S[chi]^2 , 0}, {0, 0, 0, -S[chi]^2 Sin[th]^2}};

In[3]:= MatrixForm[g]

Out[3]//MatrixForm=

atil[tau]2 0 0 0

0 -atil[tau]2 0 0

0 0 -atil[tau]2 S[chi]2 0

0 0 0 -atil[tau]2 S[chi]2 Sin[th]2

In[4]:= dq = {dtau, dchi, dth, dph};

In[5]:= FullSimplify[dq.g.dq]

Out[5]= -atil[tau]2 dchi2 - dtau2 + S[chi]2 dth2 + dph2 Sin[th]2

Lightlike unit vector in chi direction

In[6]:= ucov = {1, -1, 0, 0}

Out[6]= {1, -1, 0, 0}

In[7]:= gcontra = Inverse[g];

In[8]:= u = gcontra.ucov

Out[8]=  1

atil[tau]2
,

1

atil[tau]2
, 0, 0

In[9]:= u.g.u

Out[9]= 0

Christoffel Symbols

In[10]:= christ =

Table[Table[Sum[1 / 2 gcontra[[ii]][[mi]] (D[g[[mi]][[ki]], q[[li]]] + D[g[[mi]][[li]], q[[ki]]] -

D[g[[ki]][[li]], q[[mi]]]), {mi, 1, 4}], {ki, 1, 4}, {li, 1, 4}], {ii, 1, 4}];
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Energy-momentum tensor of the em. field

In[11]:= Acov = {0, 0, 0, a0 Cos[omtil (tau - chi)]}

Out[11]= {0, 0, 0, a0 Cos[omtil (-chi + tau)]}

In[12]:= Fcov = Table[D[Acov[[nu]], q[[mu]]] - D[Acov[[mu]], q[[nu]]], {mu, 1, 4}, {nu, 1, 4}]

Out[12]= {{0, 0, 0, -a0 omtil Sin[omtil (-chi + tau)]}, {0, 0, 0, a0 omtil Sin[omtil (-chi + tau)]},

{0, 0, 0, 0}, {a0 omtil Sin[omtil (-chi + tau)], -a0 omtil Sin[omtil (-chi + tau)], 0, 0}}

In[13]:= Fcontra = gcontra.Fcov.gcontra

Out[13]= 0, 0, 0,
a0 omtil Csc[th]2 Sin[omtil (-chi + tau)]

atil[tau]4 S[chi]2
,

0, 0, 0,
a0 omtil Csc[th]2 Sin[omtil (-chi + tau)]

atil[tau]4 S[chi]2
,

{0, 0, 0, 0}, - a0 omtil Csc[th]
2 Sin[omtil (-chi + tau)]

atil[tau]4 S[chi]2
,

-
a0 omtil Csc[th]2 Sin[omtil (-chi + tau)]

atil[tau]4 S[chi]2
, 0, 0

In[14]:= Sum[Fcontra[[al]][[be]] × Fcov[[al]][[be]], {al, 1, 4}, {be, 1, 4}]

Out[14]= 0

In[15]:= Tcontra = FullSimplify[Fcontra.g.Fcontra +

1 / 4 Sum[Fcontra[[al]][[be]] × Fcov[[al]][[be]], {al, 1, 4}, {be, 1, 4}] gcontra]

Out[15]= a0
2 omtil2 Csc[th]2 Sin[omtil (-chi + tau)]2

atil[tau]6 S[chi]2
,
a02 omtil2 Csc[th]2 Sin[omtil (-chi + tau)]2

atil[tau]6 S[chi]2
,

0, 0, a0
2 omtil2 Csc[th]2 Sin[omtil (-chi + tau)]2

atil[tau]6 S[chi]2
,

a02 omtil2 Csc[th]2 Sin[omtil (-chi + tau)]2

atil[tau]6 S[chi]2
, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0}

In[16]:= Table[u[[mu]] × u[[nu]], {mu, 1, 4}, {nu, 1, 4}]

Out[16]=  1

atil[tau]4
,

1

atil[tau]4
, 0, 0,  1

atil[tau]4
,

1

atil[tau]4
, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0}

Trace of the energy-momentum tensor:

In[17]:= Sum[(Tcontra.g)[[mu]][[mu]], {mu, 1, 4}]

Out[17]= 0

Local energy conservation

2 luminositaet-entfernung-flrw-SoSe15-2-en.nb
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In[18]:= Table[Sum[D[Tcontra[[al]][[ga]], q[[al]]], {al, 1, 4}] +

Sum[christ[[al]][[al]][[mu]] × Tcontra[[mu]][[ga]] + christ[[ga]][[al]][[mu]] × Tcontra[[al]][[mu]],

{al, 1, 4}, {mu, 1, 4}], {ga, 1, 4}]

Out[18]= {0, 0, 0, 0}

luminositaet-entfernung-flrw-SoSe15-2-en.nb 3
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