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Deriving the Kerr metric David Wagner

In this document we will attempt to derive the Kerr metric (in natural units G = c = 1), describing spacetime
outside a uniformly rotating massive body, e.g. a black hole. This calculation is by no means simple and will
take a while. We will follow Chandrasekhar tightly, who presented a derivation in his paper from 1978 [1].

Contents

1 Preliminaries and goal 1

2 Basic quantities characterising spacetime 2

3 The Einstein �eld equations 10

4 Null surface and gauge �xing 11

5 Reducing the �eld equations 12

6 Deriving and solving Ernst's equation 14

7 Properties of the Kerr metric 18

7.1 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 Special surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1 Preliminaries and goal

In general the line element ds2 is given as

ds2 = dxµdxµ = gµνdx
µdxν . (1)

Since we want a vacuum solution for an axisymmetric mass distribution (this di�ers from spherical symmetry
in such a way that it incorporates �attening due to centrifugal forces, such that azimuthal symmetry is
broken), we can simplify this generic form considerably. Firstly, we will for now work in spherical coordinates
t, r, θ, φ. Now due to the rotational symmetry and the fact that spacetime should be static, we can infer that
ds2 should be invariant under changes t → −t, φ → −φ (this corresponds to reversing the time direction
and thus the rotation). This excludes the (t, θ), (t, r), (θ, φ), (r, φ) components of the metric, leaving only
the (t, t), (r, r), (θ, θ), (φ, φ) and (t, φ) components. Notice that in contrast to the Schwarzschild case, there
is one o�-diagonal term.
Furthermore, due to axisymmetry the metric should only depend on r and θ (just as in electrodynamics).
This dependence in combination with the o�-diagonal term is what complicates the �eld equations immensely,
but will not deter us from obtaining a solution.
So far we thus have reduced the line element to

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + gtφdtdφ . (2)

After rewriting gtt := −e2ν + e2ψω2, gtφ := −2ωe2ψ, gφφ := e2ψ, grr := e2µ2 and gθθ := e2µ3 (where the terms
µ2 and µ3 originate from Chandrasekhar numbering of coordinates), we can write

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ2dr2 + e2µ3dθ2 , (3)

where ν, ψ, ω, µ2 and µ3 are functions of r and θ. Notice that we are obviously working to get a result in the
(−+ ++) convention; this however, can in the end easily reverted by multiplying with −1.
In the end, our goal will be to obtain the following values for the interesting functions:

e2ν =
ρ2∆

Σ2
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e2ψ =
Σ2 sin2(θ)

ρ2

e2µ2 =
ρ2

∆
e2µ3 =ρ2

ω =
2aMr

Σ2

with

∆ =r2 + a2 − 2Mr

ρ2 =r2 + a2 cos2(θ)

Σ2 =(r2 + a2)2 − a2∆ sin2(θ) .

2 Basic quantities characterising spacetime

The Einstein �eld equations in vacuum imply that the Ricci-Tensor vanishes:

Rµν = 0 . (4)

Now one could go on to explicitly compute the di�erent components of the Ricci tensor using the general
metric given by Eq. 3, however this is not practical, as the equations become unwieldy (which is one of the
reasons why it has taken nearly 50 years to arrive at an axisymmetric solution).
Instead we use Cartan's calculus of exterior forms and apply its structure equations. Firstly, we decompose
the metric into tetrads as

gµν := eaµe
b
νηab .

Here latin indices are raised and lowered by the Minkowski metric ηab (here de�ned in the (− + ++)
convention for reasons mentioned above). These tetrads are matrices transforming the coordinate basis dxµ

to an orthonormal basis of the cotangent space T ∗
xM of the spacetime manifold M at point x [3]

ea := eaµdx
µ .

Furthermore, their inverse Eµ
a transforms to an orthonormal basis of the respective tangent space TxM

Ea := Eµ
a∂µ .

The tetrads thus give a coordinate system at each spacetime point that is locally �at and thus easier to work
with. The price to pay is of course that the basis vectors are now dependent on the spacetime point x we
evaluate them at.
We now need to �nd the connection ωab on our manifold, which is related to the Christo�el symbols and
determines the curvature.
Since we assume a torsion-free connection (i.e. the absence of spin), the connection has to ful�l the Cartan
structure equations:

0 =dea + ωab ∧ eb (5)

Rab =dωab + ωac ∧ ωcb . (6)

From Eq. 3 we can read o� the tetrad one-forms as

e0 =eνdt dt =e−νe0

e1 =eψ(dφ− ωdt) dφ =ωe−νe0 + e−ψe1
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e2 =eµ2dr dr =e−µ2e2

e3 =eµ3dθ dθ =e−µ3e3 .

The exterior derivative of a one-form reads

d ◦ (fidx
i) =

∂fi
∂xj

dxj ∧ dxi . (7)

For the zeroth di�erential form, we get

d ◦ e0 =d ◦ (eνdt)

=eν
[
∂ν

∂r
dr ∧ dt+

∂ν

∂θ
dθ ∧ dt

]
=(∂rν)e−µ2e2 ∧ e0 + (∂θν)e−µ3e3 ∧ e0 . (8)

Likewise, we obtain for the �rst form

d ◦ e1 =d ◦
[
eψdφ− eψωdt

]
=eψ [∂rψdr ∧ dφ+ ∂θψdθ ∧ dφ− (ω∂rψ + ∂rω) dr ∧ dt− (ω∂θψ + ∂θω) dθ ∧ dt]

=eψ
[
∂rψe

−µ2e2 ∧
(
ωe−νe0 + e−ψe1

)
+ ∂θψe

−µ3e3 ∧
(
ωe−νe0 + e−ψe1

)
− (ω∂rψ + ∂rω) e−µ2e2 ∧ e−νe0 − (ω∂θψ + ∂θω) e−µ3e3 ∧ e−νe0

]
=∂rψe

−µ2e2 ∧ e1 + ∂θψe
−µ3e3 ∧ e1 − ∂rωeψ−ν−µ2e2 ∧ e0 − ∂θωeψ−ν−µ3e3 ∧ e0 . (9)

The di�erential of the second one-form reads

de2 =eµ2 [∂rµ2dr ∧ dr + ∂θµ2dθ ∧ dr]
=e−µ3∂θµ2e

3 ∧ e2 . (10)

Here we used that the wedge product of a one-form with itself vanishes, since it is antisymmetric.
The di�erential of the last one-form gives

de3 =eµ3 [∂rµ3dr ∧ dθ + ∂θµ3dθ ∧ dθ]
=e−µ2∂rµ3e

2 ∧ e3 . (11)

Combining these di�erentials with the �rst structure equation, we obtain

−ω0
b ∧ eb =(∂rν)e−µ2e2 ∧ e0 + (∂θν)e−µ3e3 ∧ e0 (12)

−ω1
b ∧ eb =∂rψe

−µ2e2 ∧ e1 + ∂θψe
−µ3e3 ∧ e1 − ∂rωeψ−ν−µ2e2 ∧ e0 − ∂θωeψ−ν−µ3e3 ∧ e0 (13)

−ω2
b ∧ eb =e−µ3∂θµ2e

3 ∧ e2 (14)

−ω3
b ∧ eb =e−µ2∂rµ3e

2 ∧ e3 . (15)

Furthermore, ωab = −ωba has to be ful�lled (this is equivalent to the metric compatibility condition), such
that ωab has six independent components. To solve these equations, it is helpful decomposing the connections
into their respective tetrad components:

ωab = (ωab)ce
c . (16)

This decomposition gives (due to the fact that the tetrads are orthogonal) 24 equations for 24 variables.
From the �rst two equations we get

(ω0
1)0 =0 (ω1

0)1 =0
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(ω0
2)0 =e−µ2∂rν (ω1

0)2 − (ω1
2)0 =eψ−ν−µ2∂rω

(ω0
3)0 =e−µ3∂θν (ω1

0)3 − (ω1
3)0 =eψ−ν−µ3∂θω

(ω0
1)2 − (ω0

2)1 =0 (ω1
2)1 =e−µ2∂rψ

(ω0
2)3 − (ω0

3)2 =0 (ω1
3)2 − (ω1

2)3 =0

(ω0
3)1 − (ω0

1)3 =0 (ω1
3)1 =e−µ3∂θψ ,

while the third and fourth equations give us

(ω2
0)1 − (ω2

1)0 =0 (ω3
0)1 − (ω3

1)0 =0

(ω2
0)2 =0 (ω3

0)2 − (ω3
2)0 =0

(ω2
0)3 − (ω2

3)0 =0 (ω3
0)3 =0

(ω2
1)2 =0 (ω3

1)2 − (ω3
2)1 =0

(ω2
3)2 =e−µ3∂θµ2 (ω3

2)3 =e−µ2∂rµ3

(ω2
1)3 − (ω2

3)1 =0 (ω3
1)3 =0 .

The solution of this system of equations reads

ω0
1 = ω1

0 =
1

2
eψ−ν−µ2∂rωe2 +

1

2
eψ−ν−µ3∂θωe3 (17)

ω0
2 = ω2

0 =e−µ2∂rνe
0 +

1

2
eψ−ν−µ2∂rωe1 (18)

ω0
3 = ω3

0 =e−µ3∂θνe
0 +

1

2
eψ−ν−µ3∂θωe1 (19)

ω1
2 = −ω2

1 =− 1

2
eψ−ν−µ2∂rωe0 + e−µ2∂rψe1 (20)

ω1
3 = −ω3

1 =− 1

2
eψ−ν−µ3∂θωe0 + e−µ3∂θψe1 (21)

ω2
3 = −ω3

2 =e−µ3∂θµ2e
2 − e−µ2∂rµ3e

3 . (22)

Next we employ Eq. 6 to construct the components of the curvature 2-form, which will give us the Ricci
tensor at once.
Explicitly we have to evaluate

R0
1 = R1

0 =dω0
1 + ω0

b ∧ ωb1
R0

2 = R2
0 =dω0

2 + ω0
b ∧ ωb2

R0
3 = R3

0 =dω0
3 + ω0

b ∧ ωb3
R1

2 = −R2
1 =dω1

2 + ω1
b ∧ ωb2

R1
3 = −R3

1 =dω1
3 + ω1

b ∧ ωb3
R2

3 = −R3
2 =dω2

3 + ω2
b ∧ ωb3 .

Since we will spell out everything here in detail to give a thorough calculation, we will start by evaluating
the exterior derivatives:

dω0
1 =

1

2
eψ−ν−µ2−µ3

[
(∂θψ − ∂θν) ∂rω + ∂2

rω − (∂rψ − ∂rν) ∂θω − ∂2
θω
]
e3 ∧ e2 . (23)

The second form is more work:

dω0
2 =e−2µ2

[
∂r(ν − µ2)∂rν + ∂2

rν
]
e2 ∧ e0 + e−µ2−µ3 [∂θ(ν − µ2)∂rν + ∂r∂θν] e3 ∧ e0

4



Deriving the Kerr metric David Wagner

+
1

2
e2ψ−ν−µ2

{[
∂r(2ψ − ν − µ2)∂rω + ∂2

rω
]
dr ∧ dφ

+ [∂θ(2ψ − ν − µ2)∂rω + ∂θ∂rω] dθ ∧ dφ−
[
∂r(2ψ − ν − µ2)ω∂rω + (∂rω)2 + ω∂2

rω
]
dr ∧ dt

+ [∂θ(2ψ − ν − µ2)ω∂rω + ∂θω∂rω + ω∂θ∂rω] dθ ∧ dt
}

=e−2µ2
[
∂r(ν − µ2)∂rν + ∂2

rν
]
e2 ∧ e0 + e−µ2−µ3 [∂θ(ν − µ2)∂rν + ∂r∂θν] e3 ∧ e0

+
1

2
e2ψ−ν−µ2

{[
∂r(2ψ − ν − µ2)∂rω + ∂2

rω
]
e−µ2

[
ωe−νe2 ∧ e0 + e−ψe2 ∧ e1

]
+ [∂θ(2ψ − ν − µ2)∂rω + ∂θ∂rω] e−µ3

[
ωe−νe3 ∧ e0 + e−ψe3 ∧ e1

]
−
[
∂r(2ψ − ν − µ2)ω∂rω + (∂rω)2 + ω∂2

rω
]
e−µ2−νe2 ∧ e0

+ [∂θ(2ψ − ν − µ2)ω∂rω + ∂θω∂rω + ω∂θ∂rω] e−µ3−νe3 ∧ e0

}
=e−2µ2

[
∂r(ν − µ2)∂rν + ∂2

rν − (∂rω)2 1

2
e2ψ−2ν

]
e2 ∧ e0

+ e−µ2−µ3
[
∂θ(ν − µ2)∂rν + ∂r∂θν − ∂θω∂rω

1

2
e2ψ−2ν

]
e3 ∧ e0

+
1

2
eψ−ν−2µ2

[
∂r(2ψ − ν − µ2)∂rω + ∂2

rω
]
e2 ∧ e1

+
1

2
eψ−ν−µ2−µ3 [∂θ(2ψ − ν − µ2)∂rω + ∂θ∂rω] e3 ∧ e1 . (24)

The third one-form looks similar:

dω0
3 =e−µ2−µ3 [∂r(ν − µ3)∂θν + ∂r∂θν] e2 ∧ e0 + e−2µ3

[
∂θ(ν − µ3)∂θν + ∂2

θν
]
e3 ∧ e0

+
1

2
e2ψ−ν−µ3

{
[∂r(2ψ − ν − µ3)∂θω + ∂r∂θω] dr ∧ dφ

+
[
∂θ(2ψ − ν − µ3)∂θω + ∂2

θω
]
dθ ∧ dφ− [∂r(2ψ − ν − µ3)ω∂θω + ∂rω∂θω + ω∂r∂θω] dr ∧ dt

+
[
∂θ(2ψ − ν − µ3)ω∂θω + (∂θω)2 + ω∂2

θω
]
dθ ∧ dt

}
=e−µ2−µ3 [∂r(ν − µ3)∂θν + ∂r∂θν] e2 ∧ e0 + e−2µ3

[
∂θ(ν − µ3)∂θν + ∂2

θν
]
e3 ∧ e0

+
1

2
e2ψ−ν−µ3

{
[∂r(2ψ − ν − µ3)∂θω + ∂r∂θω] e−µ2

[
ωe−νe2 ∧ e0 + e−ψe2 ∧ e1

]
+
[
∂θ(2ψ − ν − µ3)∂θω + ∂2

θω
]
e−µ3

[
ωe−νe3 ∧ e0 + e−ψe3 ∧ e1

]
− [∂r(2ψ − ν − µ3)ω∂θω + ∂rω∂θω + ω∂r∂θω] e−µ2−νe2 ∧ e0

+
[
∂θ(2ψ − ν − µ3)ω∂θω + (∂θω)2 + ω∂2

θω
]
e−µ3−νe3 ∧ e0

}
=e−µ2−µ3

[
∂r(ν − µ3)∂θν + ∂r∂θν − ∂rω∂θω

1

2
e2ψ−2ν

]
e2 ∧ e0

+ e−2µ3

[
∂θ(ν − µ3)∂θν + ∂2

θν − (∂θω)2 1

2
e2ψ−2ν

]
e3 ∧ e0

+
1

2
eψ−ν−µ2−µ3 [∂r(2ψ − ν − µ3)∂θω + ∂r∂θω] e2 ∧ e1

+
1

2
eψ−ν−2µ3

[
∂θ(2ψ − ν − µ3)∂θω + ∂2

θω
]
e3 ∧ e1 . (25)
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The fourth one-form's di�erential gives

dω1
2 =− 1

2
eψ−ν−2µ2

[
∂r(ψ − µ2)∂rω + ∂2

rω
]
e2 ∧ e0 − 1

2
eψ−ν−µ2−µ3 [∂θ(ψ − µ2)∂rω + ∂r∂θω] e3 ∧ e0

+ eψ−µ2
{[

∂r(ψ − µ2)∂rψ + ∂2
rψ
]
e−µ2

[
ωe−νe2 ∧ e0 + e−ψe2 ∧ e1

]
+ [∂θ(ψ − µ2)∂rψ + ∂r∂θψ] e−µ3

[
ωe−νe3 ∧ e0 + e−ψe3 ∧ e1

]
−
[
∂r(ψ − µ2)∂rψω + ∂2

rψω + ∂rψ∂rω
]
e−ν−µ2e2 ∧ e0

− [∂θ(ψ − µ2)∂rψω + ∂r∂θψω + ∂rψ∂θω] e−ν−µ3e3 ∧ e0

}
=− eψ−ν−µ2

{
1

2
e−µ2

[
∂r(ψ − µ2)∂rω + ∂2

rω
]

+ e−µ2∂rψ∂rω

}
e2 ∧ e0

− eψ−ν−µ3
{

1

2
e−µ2 [∂θ(ψ − µ2)∂rω + ∂r∂θω] + e−µ2∂rψ∂θω

}
e3 ∧ e0

+ e−µ2−µ3 [∂θ(ψ − µ2)∂rψ + ∂r∂θψ] e3 ∧ e1 + e−2µ2
[
∂r(ψ − µ2)∂rψ + ∂2

rψ
]
e2 ∧ e1 . (26)

The �fth form is very similar:

dω1
3 =− 1

2
eψ−ν−µ2−µ3 [∂r(ψ − µ3)∂θω + ∂r∂θω + ∂θψ∂rω] e2 ∧ e0

− 1

2
eψ−ν−2µ3

[
∂θ(ψ − µ3)∂θω + ∂2

θω + ∂θψ∂θω
]
e3 ∧ e0

+ e−µ2−µ3 [∂r(ψ − µ3)∂θψ + ∂r∂θψ] e2 ∧ e1 + e−2µ3
[
∂θ(ψ − µ3)∂θψ + ∂2

θψ
]
e3 ∧ e1 . (27)

For the last form's exterior derivative we obtain

dω2
3 =e−µ2−µ3

{
eµ2−µ3

[
∂θ(µ2 − µ3)∂θµ2 + ∂2

θµ2

]
+ eµ3−µ2

[
∂r(µ2 − µ3)∂rµ3 + ∂2

rµ3

]}
e3 ∧ e2 . (28)

Next we evaluate the wedge products appearing in the second structure equations one by one:

ω0
b ∧ ωb1 =ω0

2 ∧ ω2
1 + ω0

3 ∧ ω3
1

=

[(
1

2
eψ−ν−µ2∂rω

)2

+

(
1

2
eψ−ν−µ3∂θω

)2

+ e−2µ2∂rν∂rψ + e−2µ3∂θν∂θψ

]
e1 ∧ e0 , (29)

ω0
b ∧ ωb2 =ω0

1 ∧ ω1
2 + ω0

3 ∧ ω3
2

=

[
e−2µ3∂θν∂θµ2 −

(
1

2
eψ−ν−µ2∂rω

)2
]

e2 ∧ e0

− e−µ2−µ3
[
∂rµ3∂θν +

(
1

2
eψ−ν

)2

∂rω∂θω

]
e3 ∧ e0

+
1

2
eψ−ν−µ2−µ3

[
eµ2−µ3∂θω∂θµ2 + eµ3−µ2∂rω∂rψ

]
e2 ∧ e1

+
1

2
eψ−ν−µ2−µ3 [−∂θω∂rµ3 + ∂θω∂rψ] e3 ∧ e1 , (30)

ω0
b ∧ ωb3 =ω0

1 ∧ ω1
3 + ω0

2 ∧ ω2
3

=− e−µ2−µ3
[(

1

2
eψ−ν

)2

∂rω∂θω + ∂rν∂θµ2

]
e2 ∧ e0

+

[
−
(

1

2
eψ−ν−µ3∂θω

)2

+ e−2µ2∂rν∂rµ3

]
e3 ∧ e0

6



Deriving the Kerr metric David Wagner

+
1

2
eψ−ν−µ2−µ3 [∂rω∂θψ − ∂rω∂θµ2] e2 ∧ e1

+
1

2
eψ−ν−µ2−µ3

[
eµ3−µ2∂rω∂rµ3 + eµ2−µ3∂θω∂θψ

]
e3 ∧ e1 , (31)

ω1
b ∧ ωb2 =ω1

0 ∧ ω0
2 + ω1

3 ∧ ω3
2

=
1

2
eψ−ν

[
e−2µ2∂rω∂rν − e−2µ3∂θω∂θµ2

]
e2 ∧ e0 +

1

2
eψ−ν−µ2−µ3∂θω [∂rν + ∂rµ3] e3 ∧ e0

+

[(
1

2
eψ−ν−µ2∂rω

)2

+ e−2µ3∂θµ2∂θψ

]
e2 ∧ e1

+

[(
1

2
eψ−ν

)2

e−µ2−µ3∂θω∂rω − e−µ2−µ3∂rµ3∂θψ

]
e3 ∧ e1 , (32)

ω1
b ∧ ωb3 =ω1

0 ∧ ω0
3 + ω1

2 ∧ ω2
3

=
1

2
eψ−ν−µ2−µ3∂rω [∂θν + ∂θµ2] e2 ∧ e0 +

1

2
eψ−ν

[
e−2µ3∂θω∂θν − e−2µ2∂rω∂rµ3

]
e3 ∧ e0

+

[(
1

2
eψ−ν

)2

e−µ2−µ3∂rω∂θω − e−µ2−µ3∂θµ2∂rψ

]
e2 ∧ e1

+

[(
1

2
eψ−ν−µ3∂θω

)2

+ e−2µ2∂rµ3∂rψ

]
e3 ∧ e1 , (33)

ω2
b ∧ ωb3 =ω2

0 ∧ ω0
3 + ω2

1 ∧ ω1
3

=
1

2
eψ−ν−µ2−µ3 [∂rω∂θν − ∂rν∂θω + ∂rψ∂θω + ∂θψ∂rω] e1 ∧ e0 . (34)

Having computed all of this, we are able to read o� the Riemann tensor by considering how it is related to
the curvature two-form:

Rab = Rabcde
c ∧ ed . (35)

� Note: There might be a factor of 1/2 missing here, which will not bother us anyway, however, since
we are looking for vacuum solutions.

Furthermore, we should remember some symmetries of the Riemann tensor:

Rabcd = −Rbacd = −Rabdc = Rcdab .

We obtain thus

R0
110 =e−µ2−µ3

{
1

4
e2ψ−2ν

[
eµ3−µ2(∂rω)2 + eµ2−µ3(∂θω)2

]
+ eµ3−µ2∂rν∂rψ + eµ2−µ3∂θν∂θψ

}
(36)

R0
132 =

1

2
eψ−ν−µ2−µ3

[
(∂θψ − ∂θν) ∂rω + ∂2

rω − (∂rψ − ∂rν) ∂θω − ∂2
θω
]

(37)

R0
220 =e−µ2−µ3

{
eµ3−µ2

[
∂r(ν − µ2)∂rν + ∂2

rν
]
− (∂rω)2 3

4
e2ψ−2ν+µ3−µ2 + eµ2−µ3∂θν∂θµ2

}
(38)

R0
230 =e−µ2−µ3

[
∂θ(ν − µ2)∂rν + ∂r∂θν − ∂θω∂rω

3

4
e2ψ−2ν − ∂rµ3∂θν

]
(39)

R0
221 =

1

2
eψ−ν−µ2−µ3

[
eµ3−µ2∂r(3ψ − ν − µ2)∂rω + eµ3−µ2∂2

rω + eµ2−µ3∂θω∂θµ2

]
(40)

R0
231 =

1

2
eψ−ν−µ2−µ3 [∂θ(2ψ − ν − µ2)∂rω + ∂θ∂rω − ∂θω∂rµ3 + ∂θω∂rψ] (41)

R0
320 =e−µ2−µ3

[
∂r(ν − µ3)∂θν + ∂r∂θν − ∂rω∂θω

3

4
e2ψ−2ν − ∂rν∂θµ2

]
(42)
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R0
330 =e−µ2−µ3

{
eµ2−µ3

[
∂θ(ν − µ3)∂θν + ∂2

θν
]
− (∂θω)2 3

4
e2ψ−2ν+µ2−µ3 + eµ3−µ2∂rν∂rµ3

}
(43)

R0
321 =

1

2
eψ−ν−µ2−µ3 [∂r(2ψ − ν − µ3)∂θω + ∂r∂θω + ∂rω∂θψ − ∂rω∂θµ2] (44)

R0
331 =

1

2
eψ−ν−µ2−µ3

[
eµ2−µ3∂θ(3ψ − ν − µ3)∂θω + eµ2−µ3∂2

θω + eµ3−µ2∂rω∂rµ3

]
(45)

R1
220 =− eψ−ν−µ2−µ3

{
1

2
eµ3−µ2

[
∂r(3ψ − ν − µ2)∂rω + ∂2

rω
]

+ ∂θψ∂rω +
1

2
eµ2−µ3∂θω∂θµ2

}
(46)

R1
230 =− eψ−ν−µ2−µ3

{
1

2
[∂θ(ψ − µ2)∂rω + ∂r∂θω] +

[
eµ2−µ3∂θψ +

1

2
∂r (2ψ − ν − µ3)

]
∂θω

}
(47)

R1
231 =e−µ2−µ3

{
∂θ(ψ − µ2)∂rψ + ∂r∂θψ − ∂rµ3∂θψ +

1

4
e2ψ−2ν∂θω∂rω

}
(48)

R1
221 =e−µ2−µ3

{
eµ2−µ3∂θµ2∂θψ + eµ3−µ2

[
∂r(ψ − µ2)∂rψ + ∂2

rψ
]

+
1

4
e2ψ−2ν+µ3−µ2(∂rω)2

}
(49)

R1
320 =− 1

2
eψ−ν−µ2−µ3 [∂r(ψ − µ3)∂θω + ∂r∂θω − ∂rω∂θν − ∂rω∂θµ2] (50)

R1
330 =− 1

2
eψ−ν−µ2−µ3

{
eµ2−µ3

[
∂θ(ψ − ν − µ3)∂θω + ∂2

θω
]

+ eµ3−µ2∂rω∂rµ3

}
(51)

R1
321 =e−µ2−µ3

[
1

4
e2ψ−2ν∂rω∂θω − ∂θµ2∂rψ + ∂r(ψ − µ3)∂θψ + ∂r∂θψ

]
(52)

R1
331 =e−µ2−µ3

{
1

4
e2ψ−2ν+µ2−µ3(∂θω)2 + eµ3−µ2∂rµ3∂rψ + eµ2−µ3

[
∂θ(ψ − µ3)∂θψ + ∂2

θψ
]}

(53)

R2
332 =e−µ2−µ3

{
eµ2−µ3

[
∂θ(µ2 − µ3)∂θµ2 + ∂2

θµ2

]
+ eµ3−µ2

[
∂r(µ2 − µ3)∂rµ3 + ∂2

rµ3

]}
(54)

R2
310 =

1

2
eψ−ν−µ2−µ3 [∂rω∂θν − ∂rν∂θω + ∂rψ∂θω + ∂θψ∂rω] . (55)

From these quantities we can obtain all other non-vanishing components of the Riemann tensor as well since
the �rst pair of indices commutes if one of them is nonzero, while it anticommutes if both are nonzero. The
second pair of indices always anticommutes. The reason for these simple symmetries even for the Riemann
tensor of the �rst kind (i.e. with one upper index) lies in the use of tetrads, which lets us pull the �rst two
indices of this tensor with the Minkowski metric. This can be seen by considering Ref. [3], section 3.2.
Now the components of the Ricci tensor are

R00 =R1
010 +R2

020 +R3
030

=e−µ2−µ3
{
− 1

2
e2ψ−2ν

[
eµ3−µ2(∂rω)2 + eµ2−µ3(∂θω)2

]
+ eµ3−µ2

[
∂r(ψ + ν + µ3 − µ2)∂rν + ∂2

rν
]

+ eµ2−µ3
[
∂θ(ψ + ν + µ2 − µ3)∂θν + ∂2

θν
]}

(56)

R11 =R0
101 +R2

121 +R3
131

=− e−µ2−µ3
{

1

2
e2ψ−2ν

[
eµ3−µ2(∂rω)2 + eµ2−µ3(∂θω)2

]
+ eµ3−µ2

[
∂r(ψ + ν + µ3 − µ2)∂rψ + ∂2

rψ
]

+ eµ2−µ3
[
∂θ(ψ + ν + µ2 − µ3)∂θψ + ∂2

θψ
]}

(57)

R01 =R2
021 +R3

031

=
1

2
e−2ψ+ν−µ2−µ3

[
∂r

(
e3ψ−ν+µ3−µ2∂rω

)
+ ∂θ

(
e3ψ−ν+µ2−µ3∂θω

)]
(58)

R22 =R0
202 +R1

212 +R3
232
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=− e−µ2−µ3
{
eµ3−µ2

[
∂r(ν − µ2)∂rν + ∂2

rν
]
− (∂rω)2 1

2
e2ψ−2ν+µ3−µ2

+ eµ2−µ3∂θµ2∂θ(ψ + ν) + eµ3−µ2
[
∂r(ψ − µ2)∂rψ + ∂2

rψ
]

+ eµ2−µ3
[
∂θ(µ2 − µ3)∂θµ2 + ∂2

θµ2

]
+ eµ3−µ2

[
∂r(µ2 − µ3)∂rµ3 + ∂2

rµ3

]}
(59)

R33 =R0
303 +R1

313 +R2
323

=− e−µ2−µ3
{
eµ2−µ3

[
∂θ(ν − µ3)∂θν + ∂2

θν + ∂θ(ψ − µ3)∂θψ + ∂2
θψ
]
− (∂θω)2 1

2
e2ψ−2ν+µ2−µ3

+ eµ3−µ2 (∂rψ + ∂rν) ∂rµ3 + eµ2−µ3
[
∂θ(µ2 − µ3)∂θµ2 + ∂2

θµ2

]
+ eµ3−µ2

[
∂r(µ2 − µ3)∂rµ3 + ∂2

rµ3

]}
(60)

R23 =R0
203 +R1

213

=− e−µ2−µ3
{
∂θ(ν − µ2)∂rν + ∂r∂θ (ν + ψ)− ∂θω∂rω

1

2
e2ψ−2ν − ∂θ (ν + ψ) ∂rµ3 + ∂θ(ψ − µ2)∂rψ

}
(61)

Lastly we need the Ricci scalar, which can be computed by considering the contraction of the Ricci tensor.
Note that this is quite easy as we are still working in the tetrad basis and thus can pull indices with the
Minkowski metric (still in the −+ ++ convention to be consistent).

R =Raa

=R0
0 +R1

1 +R2
2 +R3

3

=−R00 +R11 +R22 +R33

=2e−µ2−µ3
{

1

4
e2ψ−2ν

[
eµ2−µ3(∂θω)2 + eµ3−µ2(∂rω)2

]
− eµ3−µ2

[
∂r(ψ + ν + µ3 − µ2)∂rν + ∂2

rν + ∂r(ψ + µ3 − µ2)∂rψ + ∂2
rψ + ∂r(µ2 − µ3)∂rµ3 + ∂2

rµ3

]
− eµ2−µ3

[
∂θ(ψ + ν + µ2 − µ3)∂θν + ∂2

θν + ∂θ(ψ + µ2 − µ3)∂θψ + ∂2
θψ + ∂θ(µ2 − µ3)∂θµ2 + ∂2

θµ2

]}
.

(62)

This enables us �nally to write down the components of the Einstein tensor

Gab = Rab −
R

2
ηab , (63)

where the metric is Minkowskian once again due to the employed tetrad frame.
Thus we obtain

G00 =e−µ2−µ3
{
− 1

4
e2ψ−2ν

[
eµ3−µ2(∂rω)2 + eµ2−µ3(∂θω)2

]
− eµ3−µ2

[
∂r(ψ + µ3 − µ2)∂rψ + ∂2

rψ + ∂r(µ2 − µ3)∂rµ3 + ∂2
rµ3

]
− eµ2−µ3

[
∂θ(ψ + µ2 − µ3)∂θψ + ∂2

θψ + ∂θ(µ2 − µ3)∂θµ2 + ∂2
θµ2

]}
(64)

G11 =− e−µ2−µ3
{

3

4
e2ψ−2ν

[
eµ3−µ2(∂rω)2 + eµ2−µ3(∂θω)2

]
− eµ3−µ2

[
∂r(ν + µ3 − µ2)∂rν + ∂2

rν + ∂r(µ2 − µ3)∂rµ3 + ∂2
rµ3

]
− eµ2−µ3

[
∂θ(ν + µ2 − µ3)∂θν + ∂2

θν + ∂θ(µ2 − µ3)∂θµ2 + ∂2
θµ2

]}
(65)
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G22 =− e−µ2−µ3
{

1

4
e2ψ−2ν

[
eµ2−µ3(∂θω)2 − eµ3−µ2(∂rω)2

]
− eµ3−µ2 [∂r(ψ + µ3)∂rν + ∂rµ3∂rψ]

− eµ2−µ3
[
∂θ(ψ + ν − µ3)∂θν + ∂2

θ (ν + ψ) + ∂θ(ψ − µ3)∂θψ
]}

(66)

G33 =− e−µ2−µ3
{

1

4
e2ψ−2ν

[
eµ3−µ2(∂rω)2 − eµ2−µ3(∂θω)2

]
− eµ2−µ3 [∂θ(ψ + µ2)∂θν + ∂θµ2∂θψ]

− eµ3−µ2
[
∂r(ψ + ν − µ2)∂rν + ∂2

r (ν + ψ) + ∂r(ψ − µ2)∂rψ
]}

. (67)

3 The Einstein �eld equations

Having now all these objects at our disposal, we can �nally con�rm the starting equations of Ref. [1]; for
this we de�ne

X :=eµ3−µ2(∂rω)2 + eµ2−µ3(∂θω)2 (68)

β :=ψ + ν (69)

and employ that in vacuum
Rµν = Gµν = 0 ,

leading to

1

2
e2ψ−2νX =eµ3−µ2

[
∂r(ψ + ν + µ3 − µ2)∂rν + ∂2

rν
]

+ eµ2−µ3
[
∂θ(ψ + ν + µ2 − µ3)∂θν + ∂2

θν
]

(70)

−1

2
e2ψ−2νX =eµ3−µ2

[
∂r(ψ + ν + µ3 − µ2)∂rψ + ∂2

rψ
]

+ eµ2−µ3
[
∂θ(ψ + ν + µ2 − µ3)∂θψ + ∂2

θψ
]

(71)

−1

4
e2ψ−2νX =eµ3−µ2

[
∂r(ψ + µ3 − µ2)∂rψ + ∂2

rψ + ∂r(µ2 − µ3)∂rµ3 + ∂2
rµ3

]
+ eµ2−µ3

[
∂θ(ψ + µ2 − µ3)∂θψ + ∂2

θψ + ∂θ(µ2 − µ3)∂θµ2 + ∂2
θµ2

]
(72)

3

4
e2ψ−2νX =eµ3−µ2

[
∂r(ν + µ3 − µ2)∂rν + ∂2

rν + ∂r(µ2 − µ3)∂rµ3 + ∂2
rµ3

]
+ eµ2−µ3

[
∂θ(ν + µ2 − µ3)∂θν + ∂2

θν + ∂θ(µ2 − µ3)∂θµ2 + ∂2
θµ2

]
(73)

0 =∂r

(
e3ψ−ν+µ3−µ2∂rω

)
+ ∂θ

(
e3ψ−ν+µ2−µ3∂θω

)
. (74)

Also we can take the di�erence of G22 and G33 to obtain

0 =
1

2
e2ψ−2ν

[
eµ2−µ3(∂θω)2 − eµ3−µ2(∂rω)2

]
− eµ2−µ3

[
∂θ(ν − µ2 − µ3)∂θν + ∂2

θβ + ∂θ(ψ − µ2 − µ3)∂θψ
]

+ eµ3−µ2
[
∂r(ν − µ2 − µ3)∂rν + ∂2

rβ + ∂r(ψ − µ2 − µ3)∂rψ
]
, (75)

which can be rewritten as

2e−β
[
∂r

(
eβ+µ3−µ2∂rβ

)
− ∂θ

(
eβ+µ2−µ3∂θβ

)]
=4eµ3−µ2 (∂rβ∂rµ3 + ∂rψ∂rν)− 4eµ2−µ3 (∂θβ∂θµ2 + ∂θψ∂θν)

+ e2ψ−2ν
[
eµ3−µ2(∂rω)2 − eµ2−µ3(∂θω)2

]
. (76)

Equations 70 and 71 can be rewritten as

1

2
e3ψ−νX =∂r

(
eψ+ν+µ3−µ2∂rν

)
+ ∂θ

(
eψ+ν+µ2−µ3∂θν

)
(77)

−1

2
e3ψ−νX =∂r

(
eψ+ν+µ3−µ2∂rψ

)
+ ∂θ

(
eψ+ν+µ2−µ3∂θψ

)
. (78)
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The sum and di�erence of these two gives

0 =∂r

(
eβ+µ3−µ2∂rβ

)
+ ∂θ

(
eβ+µ2−µ3∂θβ

)
(79)

e3ψ−νX =∂r

[
eβ+µ3−µ2∂r(ν − ψ)

]
+ ∂θ

[
eβ+µ2−µ3∂θ(ν − ψ)

]
. (80)

Noticing that we can rewrite Eq. 74 as

e3ψ−νX = ∂r

(
e3ψ−ν+µ3−µ2ω∂rω

)
+ ∂θ

(
e3ψ−ν+µ2−µ3ω∂θω

)
, (81)

we can insert this result into Eq. 80 and obtain

0 = ∂r

[
e3ψ−ν+µ3−µ2

(
e2ν−2ψ∂r(ψ − ν) +

1

2
∂rω

2

)]
+ ∂θ

[
e3ψ−ν+µ2−µ3

(
e2ν−2ψ∂θ(ψ − ν) +

1

2
∂θω

2

)]
,

which, after de�ning
χ := eν−ψ ,

reads

0 = ∂r

[
e3ψ−ν+µ3−µ2∂r(χ

2 − ω2)
]

+ ∂θ

[
e3ψ−ν+µ2−µ3∂θ(χ

2 − ω2)
]
. (82)

Comparing the expression above with Eq. 74, we notice that the quantities ω and χ2 − ω2 are determined
by the same equation.

4 Null surface and gauge �xing

Our problem, for a vanishing angular velocity, should reduce ot the Schwarzschild metric, which features an
event horizon spanned by the Killing vector ∂t. This event horizon constitutes a so-called null surface, as
the normal vectors to this surface are null-vectors.
Now in our problem (as it should reduce to the Schwarzschild case in the limit of vanishing rotation) it is
reasonable to assume that there is a smooth null surface spanned by the two Killing vectors ∂t and ∂φ as
well.
As done in Ref. [1], we denote the equation determining the surface by

N(r, θ) = 0 .

Since the gradient of this equation gives the respective normal vector, the condition that the equation above
describes a null surface is given by

gij∂iN∂jN = 0 , (83)

which (for our Ansatz) reduces to
e2µ3−2µ2(∂rN)2 + (∂θN)2 = 0 . (84)

Now, as we are free to impose any di�eomorphism due to the gauge freedom, we choose

e2µ3−2µ2 = ∆(r) , (85)

where ∆(r) is an unspeci�ed function of r only. This implies that on the event horizon ∆(r) = 0 holds (this
is because the term ∂θN should vanish separately, and thus N should not depend on θ at all).
In order for the null surface to be spanned by ∂t and ∂φ, the determinant of the induced (t, φ)−submetric
has to vanish[2] (intuitively, this is because a null surface should have a vanishing two-volume (i.e. surface),
and in the resulting integral the invariant volume element contains the determinant of this submetric). From
Eq. 3 we can compute this determinant and arrive at

eβ = 0 , (86)
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which must hold when ∆ = 0. Next we suppose that, in line with the conditions above, eβ is separable in r
and θ as

eβ =
√

∆(r)f(θ) , (87)

where f(θ) is as of now not speci�ed.
Inserting these expressions for eβ and e2µ3−2µ2 into Eq. 79, we obtain

0 = ∂r

(√
∆∂r
√

∆
)

︸ ︷︷ ︸
1
2
∂2r∆

+
∂2
θf

f
. (88)

One solution (where the space of solutions is restricted by e.g. the requirement of convexity of the horizon)
of this equation is given by ∂2

r∆ = 2 and f(θ) = sin(θ). Introducing two constantsM and a (which will later
be tied to the mass and angular momentum of the black hole), we can thus write ∆ as

∆(r) = r2 + a2 − 2Mr . (89)

5 Reducing the �eld equations

Using our solutions
eµ3−µ2 =

√
∆ , eβ =

√
∆ sin(θ) (90)

and substituting
µ := cos(θ) , δ := 1− µ2 = sin2(θ) ,

we can rewrite Eqs. 74 and 80 as

0 =∂r

(
e2ψ−2ν∆∂rω

)
+ ∂µ

(
e2ψ−2νδ∂µω

)
(91)

e2ψ−2ν
[
∆(∂rω)2 + δ(∂µω)2

]
=∂r [∆∂r(ν − ψ)] + ∂µ [δ∂µ(ν − ψ)] , (92)

where we used that

X =
√

∆(∂rω)2 +
δ√
∆

(∂µω)2 .

These equations can be expressed as

0 =∂r

(
∆

χ2
∂rω

)
+ ∂µ

(
δ

χ2
∂µω

)
⇐⇒ 2 (∆∂rχ∂rω + δ∂µχ∂µω) =χ [∂r (∆∂rω) + ∂µ (δ∂µω)] (93)

1

χ2

[
∆(∂rω)2 + δ(∂µω)2

]
=∂r

(
∆

χ
∂rχ

)
+ ∂µ

(
δ

χ
∂µχ

)
⇐⇒ ∆(∂rω)2 + δ(∂µω)2 + ∆(∂rχ)2 + δ(∂µχ)2 =χ [∂r (∆∂rχ) + ∂µ (δ∂µχ)] , (94)

where we employed the de�nition of χ from earlier.
Next we de�ne

X := χ+ ω , Y := χ− ω , (95)

allowing us to rewrite Eqs. 93 and 94 as

2
[
∆(∂rX )2 −∆(∂rY)2 + δ(∂µX )2 − δ(∂µY)2

]
=(X + Y) [∂r (∆∂rX )− ∂r (∆∂rY) + ∂µ (δ∂µX )− ∂µ (δ∂µY)] (96)

2
[
∆(∂rX )2 + ∆(∂rY)2 + δ(∂µX )2 + δ(∂µY)2

]
=(X + Y) [∂r (∆∂rX ) + ∂r (∆∂rY) + ∂µ (δ∂µX ) + ∂µ (δ∂µY)] . (97)

12



Deriving the Kerr metric David Wagner

Adding and subtracting these two equations, we end up with a pair of symmetric expressions:

∆(∂rX )2 + δ(∂µX )2 =
1

2
(X + Y) [∂r (∆∂rX ) + ∂µ (δ∂µX )] (98)

∆(∂rY)2 + δ(∂µY)2 =
1

2
(X + Y) [∂r (∆∂rY) + ∂µ (δ∂µY)] . (99)

We should note that, with these de�nitions, Eq. 76 can be expressed as

2√
∆

[
∂r

(√
∆∂r
√

∆
)
− ∂µ

(√
δ∂µ
√
δ
)]

=4
√

∆

(
1√
∆δ

∂r
√

∆δ∂rµ3 + ∂rψ∂rν

)
− 4

δ√
∆

(
1√
∆δ

∂µ
√

∆δ∂µµ2 + ∂µψ∂µν

)
+

1

χ2

[√
∆(∂rω)2 − δ√

∆
(∂µω)2

]
⇐⇒ 2√

∆

[
(∂r
√

∆)2 +
√

∆∂2
r

√
∆− (∂µ

√
δ)2 −

√
δ∂2
µ

√
δ
]

=4
√

∆

(
1√
∆δ

∂r
√

∆δ∂rµ3 + ∂rψ∂rν

)
− 4

δ√
∆

(
1√
∆δ

∂µ
√

∆δ∂µµ2 + ∂µψ∂µν

)
− 1

χ2
√

∆

{
∆
[
∂rX∂rY − χ2(∂r(ν − ψ))2

]
+ δ

[
∂µX∂µY − χ2(∂µ(ν − ψ))2

]}
⇐⇒ 2√

∆

[
(∂r
√

∆)2 +
√

∆∂2
r

√
∆− (∂µ

√
δ)2 −

√
δ∂2
µ

√
δ
]

=4∂r
√

∆∂rµ3 − 4

√
δ

∆
∂µ
√
δ∂µµ2 +

1√
∆

[
(∂r
√

∆)2 − (∂µ
√
δ)2
]
− 1

χ2
√

∆
[∆∂rX∂rY − δ∂µX∂µY]

⇐⇒ 2
[
(∂r
√

∆)2 +
√

∆∂2
r

√
∆− (∂µ

√
δ)2 −

√
δ∂2
µ

√
δ
]

=4(r −M)∂rµ3 + 4µ∂µµ2 +
[
(∂r
√

∆)2 − (∂µ
√
δ)2
]
− 1

χ2
[∆∂rX∂rY − δ∂µX∂µY]

⇐⇒ 2
[
(r −M)∂r(µ3 − µ2) +

√
∆∂2

r

√
∆− (∂µ

√
δ)2 −

√
δ∂2
µ

√
δ
]

=4(r −M)∂rµ3 + 4µ∂µµ2 + 2µ∂µ(µ3 − µ2) +
[
(∂r
√

∆)2 − (∂µ
√
δ)2
]
− 1

χ2
[∆∂rX∂rY − δ∂µX∂µY]

⇐⇒ 0 =2(r −M)∂r (µ2 + µ3) + 2µ∂µ (µ2 + µ3)− 1

χ2
[∆∂rX∂rY − δ∂µX∂µY]

+ (∂r
√

∆)2 − 2
√

∆∂2
r

√
∆ + (∂µ

√
δ)2 + 2

√
δ∂2
µ

√
δ

⇐⇒ 0 =2(r −M)∂r (µ2 + µ3) + 2µ∂µ (µ2 + µ3)− 1

χ2
[∆∂rX∂rY − δ∂µX∂µY]

+ (∂r
√

∆)2 − 2
√

∆∂2
r

√
∆− 1− 1

δ

⇐⇒ 0 =2 [(r −M)∂r + µ∂µ] (µ2 + µ3)− 1

χ2
[∆∂rX∂rY − δ∂µX∂µY] + 3

M2 − a2

∆
− 1

δ
. (100)

In this series of �elementary reductions� (cf. Ref. [1], p. 410), we employed that

∂r
√

∆ = ∂r(µ3 − µ2)
√

∆ =
1√
∆

(r −M)

and

2∂µ(µ3 − µ2) =
∂µ∆

∆
= 0 .
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The remaining task is now as follows: Solve Eqs. 98 and 99 to get expressions for X ,Y and thus for χ, ω,
after which Eq. 100 may be solved for µ2 + µ3. Then the metric, which after our calculations so far can
already be described through

ds2 =
√

∆δ

[
−χdt2 +

1

χ
(dφ− ωdt)2

]
+
eµ2+µ3
√

∆

(
dr2 + ∆dθ2

)
, (101)

will be fully speci�ed.

6 Deriving and solving Ernst's equation

In order to solve Eqs. 98 and 99, we are now going to rewrite them into a single complex expression that is
called Ernst's equation.
For this we de�ne

f := XYe2ψ =
√

∆δ
χ2 − ω2

χ
, W :=

ω

XY
=

ω

χ2 − ω2

Since we know from Eq. 82 that ω and χ2 − ω2 = XY satisfy the same equation, it holds that

∂r

(
f2

∆
∂rW

)
+ ∂θ

(
f2

δ
∂θW

)
= 0 . (102)

This can be seen by expanding the expression:

∂r

(
f2

δ
∂rW

)
+ ∂µ

(
f2

∆
∂µW

)
=∂r

[
∆

χ2
(XY)2∂rW

]
+ ∂µ

[
δ

χ2
(XY)2∂µW

]
=∂r

[
∆

χ2
(XY∂rω − ω∂r(XY))

]
+ ∂µ

[
δ

χ2
(XY∂µω − ω∂µ(XY))

]
=XY∂r

[
∆

χ2
∂rω

]
− ω∂r

[
∆

χ2
∂r(XY)

]
+ XY∂µ

[
δ

χ2
∂µω

]
− ω∂µ

[
δ

χ2
∂µ(XY)

]
=0 , (103)

where Eq. 91 was used at the end. This implies that W may be derived from a potential g, where

∂rg =
f2

∆
∂µW , ∂µg = −f

2

δ
∂rW ,

such that
∇×∇g = 0 (104)

in the two-dimensional r, µ−subspace. The potential g itself obviously satis�es

∂r

(
∆

f2
∂rg

)
+ ∂µ

(
δ

f2
∂µg

)
= 0 , (105)

which can be rewritten as

f [∂r (∆∂rg) + ∂µ (δ∂µg)] = 2∆∂rg∂rf + 2δ∂µg∂µf . (106)

Along the same lines, we can see that

∂r

(
∆

f
∂rf

)
+ ∂µ

(
δ

f
∂µf

)
= −f2

[
1

δ
(∂rW)2 +

1

∆
(∂µW)2

]
(107)

14
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holds, which can be expanded to

f [∂r (∆∂rf) + ∂µ (δ∂µf)] = ∆(∂rf)2 + δ(∂µf)2 −∆(∂rg)2 − δ(∂µg)2 . (108)

Now we introduce the complex variable
Z := f + ig ,

through the use of which we can combine Eqs. 106 and 108 into

<(Z) [∂r (∆∂rZ) + ∂µ (δ∂µZ)] = ∆(∂rZ)2 + δ(∂µZ)2 . (109)

Finally introducing the transformation

Z =
1 + E
1− E

=
1− EĒ
|1− E|2

+
E − Ē
|1− E|2

, (110)

we �nd

1− EĒ
|1− E|2

[
2

(1− E)2
∂r(∆∂rE) +

2

(1− E)2
∂µ(δ∂µE) +

4∆

(1− E)3
(∂rE)2 +

4δ

(1− E)3
(∂µE)2

]
=

4∆

(1− E)4
(∂rE)2 +

4δ

(1− E)4
(∂µE)2

⇐⇒ (1− EĒ)

[
2

(1− E)2
∂r(∆∂rE) +

2

(1− E)2
∂µ(δ∂µE)

]
=− Ē(1− E)

[
4∆

(1− E)3
(∂rE)2 +

4δ

(1− E)3
(∂µE)2

]
⇐⇒ (1− EĒ) [∂r(∆∂rE) + ∂µ(δ∂µE)] = −Ē

[
2∆(∂rE)2 + 2δ(∂µE)2

]
.

This expression, when using the new variable

η2 :=
(r −M)2

M2 − a2
=

∆

M2 − a2
+ 1 ,

can be rewritten as

(1− EĒ)
{
∂η[(η

2 − 1)∂ηE ] + ∂µ[(1− µ2)∂µE ]
}

= −Ē
[
2(η2 − 1)(∂ηE)2 + 2(1− µ2)(∂µE)2

]
, (111)

which constitutes Ernst's equation.
This equation is solved by

E = −pη − iqµ , p2 + q2 = 1 ,

as can be directly veri�ed. In order to do this we �rstly evaluate the right-hand side of Eq. 111:

(1− EĒ)
{
∂η[(η

2 − 1)∂ηE ] + ∂µ[(1− µ2)∂µE ]
}

=(1− p2η2 − q2µ2)
{
∂η[(η

2 − 1)(−p)] + ∂µ[(1− µ2)(−iq)]
}

=(1− p2η2 − q2µ2) (−2ηp+ 2iqµ)

=2
[
−ηp+ iqµ+ η3p3 − ip2qη2µ+ ηq2pµ2 − iq3µ3

]
.

The right-hand side gives

− Ē
[
2(η2 − 1)(∂ηE)2 + 2(1− µ2)(∂µE)2

]
=(pη − iqµ)

[
2(η2 − 1)p2 + 2(1− µ2)(−q2)

]
=2
[
p3η3 − p3η − iqη2p2µ+ iqp2µ− q2pη + iq3µ+ q2pηµ2 − iq3µ3

]
15
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=2

p3η3 − pη (p2 + q2)︸ ︷︷ ︸
=1

−iqη2p2µ+ iq (p2 + q2)︸ ︷︷ ︸
=1

µ+ q2pηµ2 − iq3µ3

 ,

such that the proposed solution does indeed solve Ernst's equation.
Thus we can split up the complex variable Z into its real and imaginary parts

Z = Z1 + iZ2

and obtain

Z1 =<(Z) =
1− EĒ
|1− E|2

=
1− p2η2 − q2µ2

(1 + pη)2 + q2µ2
= −p

2(η2 − 1)− q2(1− µ2)

(1 + pη)2 + q2µ2
(112)

Z2 ==(Z) =
E − Ē
|1− E|2

= − 2qµ

(1 + pη)2 + q2µ2
. (113)

Since the equation of motion for Z, Eq. 109, is invariant under a change Z → −Z, we will use the negative
of the solutions above.
Resubstituting the variable η, we arrive at

Z1 =
∆− q2

p2
(M2 − a2)δ[

p−1
√
M2 − a2 + r −M

]2
+ (M2 − a2) q

2

p2
µ2

(114)

Z2 =
2 q
p2

(M2 − a2)µ[
p−1
√
M2 − a2 + r −M

]2
+ (M2 − a2) q

2

p2
µ2

. (115)

Next we choose

p =

√
M2 − a2

M
, q =

a

M
,

which manifestly ful�ls p2 + q2 = 1 and leads us to

Z1 =
∆− a2δ

r2 + µ2a2
(116)

Z2 =
2aMµ

r2 + a2µ2
. (117)

Introducing the variable
ρ2 := r2 + a2µ2

and reverting back to the functions f and g, we obtain

f =(χ2 − ω2)e2ψ = e2ν − ω2e2ψ =
∆− a2δ

ρ2
(118)

g =
2aMµ

ρ2
. (119)

Employing the de�ning relations of g, we �nd the constraints

∂rg =− 4raMµ

ρ4
=

(∆− a2δ)2

∆ρ4
∂µW (120)

∂µg =
2aM(ρ2 − a2µ2)

ρ4
= −(∆− a2δ)2

δρ4
∂rW , (121)
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which are ful�lled by

W =
ω

χ2 − ω2
=

2aMrδ

∆− a2δ
. (122)

Combining the expressions for f and W, we �nd

ωe2ψ =
2aMrδ

ρ2
. (123)

We can combine the expression above with Eq. 118 to obtain

∆− a2δ

ρ2
e2ψ = eβ − ω2e4ψ =

∆δρ4 − 4a2M2r2δ2

ρ4
, (124)

where we used our solution for eβ . These expressions for ω and e2ψ are solved by

e2ψ =
δΣ2

ρ2
(125)

ω =
2aMr

Σ2
, (126)

where

Σ2 =
ρ4∆− 4a2M2r2δ

∆− a2δ
= (r2 + a2)2 − a2∆δ .

Furthermore, we �nd the solution for e2ν by considering the identity

e2ν = e2β−2ψ ,

yielding

e2ν =
ρ2∆

Σ2
. (127)

In the �nal step we can �nd the solution for µ2 + µ3, for which we �rst need to �nd the objects X and Y:

X =
∆− a2δ

√
δ
[
ρ2
√

∆− 2aMr
√
δ
] =

√
∆ + a

√
δ

√
δ
[
r2 + a2 + a

√
∆δ
] (128)

Y =
∆− a2δ

√
δ
[
ρ2
√

∆ + 2aMr
√
δ
] =

√
∆− a

√
δ

√
δ
[
r2 + a2 − a

√
∆δ
] . (129)

Here we used the decomposition

ρ4∆− 4a2M2r2δ =
(
ρ2
√

∆− 2aMr
√
δ
)(

ρ2
√

∆ + 2aMr
√
δ
)
.

The derivatives of these quantities can be computed to

∂rX =
(r −M)ρ2 − (

√
∆ + a

√
δ)2r
√

∆
√

∆δ
[
r2 + a2 + a

√
∆δ
]2 , ∂µX =

µ
√

∆
[
r2 + a2 + a2δ + 2a

√
∆δ
]

δ
3
2

[
r2 + a2 + a

√
∆δ
]2 ,

∂rY =
(r −M)ρ2 − (

√
∆− a

√
δ)2r
√

∆
√

∆δ
[
r2 + a2 − a

√
∆δ
]2 , ∂µY =

µ
√

∆
[
r2 + a2 + a2δ − 2a

√
∆δ
]

δ
3
2

[
r2 + a2 − a

√
∆δ
]2 .

These results can now be inserted into Eq. 100 to obtain

[(r −M)∂r + µ∂µ] (µ2 + µ3) =2− (r −M)2

∆
− 2

rM

ρ2
, (130)
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which is solved (as is easily checked) by

eµ2+µ3 =
ρ2

√
∆
. (131)

With this result we are �nally done; the line element (reverting back to the (+ − −−) convention) is now
given by

ds2 =
ρ2

Σ2
∆dt2 − Σ2

ρ2
sin2(θ)

(
dφ− 2aMr

Σ2
dt

)2

− ρ2

∆

(
dr2 + ∆dθ2

)
. (132)

In matrix notation, we have

(gµν) =


1− 2Mr

ρ2
0 0 2aMr

ρ2
sin2(θ)

0 −ρ2

∆ 0 0
0 0 −ρ2 0

2aMr
ρ2

sin2(θ) 0 0 −
[
r2 + a2 + 2Ma2r sin2(θ)

ρ2

]
sin2(θ)

 , (133)

(gµν) =


Σ2

ρ2∆
0 0 2aMr

ρ2∆

0 −∆
ρ2

0 0

0 0 − 1
ρ2

0
2aMr
ρ2∆

0 0 −∆−a2 sin2(θ)

ρ2∆ sin2(θ)

 . (134)

7 Properties of the Kerr metric

Having, after a lot of work, �nally having established the Kerr metric, we want to take a look at some of its
properties.

7.1 Asymptotic properties

Firstly, when letting a→ 0, we obtain

(gµν) =


1− 2M

r 0 0 0
0 − 1

1− 2M
r

0 0

0 0 −r2 0
0 0 0 −r2 sin2(θ)

 , (135)

which is the usual Schwarzschild metric. Thus the parameter M has to be identi�ed with the mass of the
black hole and rS = 2M (in natural units) is the Schwarzschild radius.
When letting r go to in�nity, we obtain (up to order O(r−3))

(gµν) =


1− 2M

r 0 0 2aM
r sin2(θ)

0 − 1
1− 2M

r

0 0

0 0 −r2 0
2aM
r sin2(θ) 0 0 −r2 sin2(θ)

 . (136)

Manifestly, this object constitutes the Schwarzschild metric with a dφdt cross term, which should correspond
to the rotation of the body in question. We observe that for a → 0, this term of course vanishes. Further-
more, if we exclude all orders smaller than O(1), we are left with the usual Minkowski metric in spherical
coordinates, thus letting us conclude that the Kerr metric is asymptotically �at.
If we calculate the rate of rotation Ω for Eq. 136 (cf. [4]), we �nd, when identifying a = J

M (with J the total
angular momentum of the body) that

Ω =
3(J · r̂)r̂− J

r3
, (137)
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in agreement with the known Lense-Thirring e�ect, which constitutes a weak-�eld approximation of the exact
Kerr solution.
Finally, for M → 0, we �nd

(gµν) =


1 0 0 0

0 − r2+a2 cos2(θ)
r2+a2

0 0

0 0 −[r2 + a2 cos2(θ)] 0
0 0 0 −

(
r2 + a2

)
sin2(θ)

 , (138)

which is the �at Minkowski metric in ellipsoidal coordinates.

7.2 Special surfaces

As was the case with the Schwarzschild metric, we are facing some interesting behaviours in Eq. 135, which
we will now take a closer look at.
The �rst one occurs when ∆ = 0, which translates to

rH,± =
rS
2
±
√(rS

2

)2
− a2 . (139)

This makes it apparent that the one event horizon from the Schwarzschild metric at rS (for a = 0) splits
up into an inner and an outer event horizon, with the distance between the two increasing with a. Notice
that for a su�ciently large, ∆ can not become zero at all, implying that there will be no event horizon, thus
leading to a naked singularity, with �singularity�as it is predicted by GR (we will in the next subsection show
the existence of such a singularity in the �rst place).
Secondly, the tt component of the metric changes sign when ρ2 = 2Mr; this leads to

rE,± =
rS
2
±
√(rS

2

)2
− a2 cos2(θ) . (140)

These two surfaces are called the inner and outer ergospheres. Since cos2(θ) ≤ 1, the outer ergosphere lies
outside the outer event horizon, touching it at the poles, while the inner ergosphere lies within the inner
event horizon. Inside this (outer) ergosphere, every particle on a timelike path has to co-rotate with the
central mass.
Due to the respective particles not yet having crossed the event horizon, they may still be ejected from the
black hole, having gained energy through the forced co-rotation. Thus the rotating black hole emits highly
energetic particles, which is called the Penrose process and is one theory to explain gamma-ray bursts.

7.3 Singularities

In order to see where the singularities of the Kerr metric lie, we would have to express the components of the
Riemann tensor in terms of our solution; this however, we will not do right now, because this was enough
work already, but refer to Ref. [2], where it becomes clear that the components of the Riemann tensor only
diverge for ρ = 0. This in turn can only occur for r = 0 and θ = π

2 (Here we also can see that the inner
ergosphere touches the singularity in the equatorial plane). In order to clarify the meaning of this singularity
we �rstly change to new time and angular variables

du =dt− r2 + a2

∆
dr

dφ̃ =dφ− a

∆
dr .

Hereafter (and after a few steps in Ref. [2]) we introduce

dx0 =du+ dr
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x =
[
r cos(φ̃) + a sin(φ̃)

]
cos(θ)

y =
[
r sin(φ̃)− a cos(φ̃)

]
cos(θ)

z =r cos(θ)

x2 + y2 =(r2 + a2) sin2(θ) ,

after which the line element can be brought into the following form:

ds2 = (dx0)2 − dx2 − dy2 − dz2 − 2Mr3

r4 + a2z2

{
dx0 − 1

r2 + a2
[r (xdx+ ydy) + a (xdy − ydx)]− z

r
dz

}2

.

The advantage of this form lies in the fact that it reduces to a cartesian coordinate system in the limit of
M → 0, thus removing the degeneracy of spherical (or ellipsoidal) coordinates at r = 0.
Here we can clearly see that the point of the singularity r = 0, θ = π

2 corresponds to

x2 + y2 = a2 (141)

in the equatorial plane (z = 0). Thus the Kerr metric actually features a ring singularity with radius a, that
of course shrinks to a point in the limit of vanishing rotation.
As a �nal remark, the existence of a ring singularity makes it obvious that we are (somehow) allowed to
continue our solution to negative values of r. This entails many interesting consequences, which we will
however not deal with here and refer to e.g. Ref. [5].
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