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Motivation: “Institute for Advance Study” in Princeton
(1933 -1950)

Figure : Johann von Neumann, Albert Einstein und John Forbes Nash Jr.

Johann (John) von Neumann. Zur Theorie der Gesellschaftsspiele.
Mathematische Annalen, 100:295–300, 1928.
J. von Neumann. Mathematische Grundlagen der Quantenmechanik.
Springer, 1932.
J. von Neumann and O. Morgenstern. The Theory of Games and
Economic Behaviour. Princeton University Press, 1947.
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Motivation: “Institute for Advance Study” in Princeton
(1933 -1950)

Figure : Johann von Neumann, Albert Einstein und John Forbes Nash Jr.

Quantum Entanglement and the “EPR-Paradoxon”:

A. Einstein, B. Podolsky, and N. Rosen. Can Quantum-Mechanical
Description of Physical Reality Be Considered Complete? Physical Review,
47:777–780, 1935.
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Motivation: “Institute for Advance Study” in Princeton
(1933 -1950)

Figure : Johann von Neumann, Albert Einstein und John Forbes Nash Jr.

John F. Nash Jr. Equilibrium Points in N-person Games. Proceedings of
the National Academy of Sciences, 36:48–49, 1950.
John F. Nash Jr. The Bargaining Problem. Econometrica, 18:155–162,
1950.
John F. Nash Jr. Non-Cooperative Games. The Annals of Mathematics,
54(2):286–295, 1951.
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Quantum Game Theory

Quantum Game Theory is a mathematical and conceptual
amplification of classical game theory. It unifies the two
mathematical theories of von Neumann (Game Theory and
Quantum Theory) with Einstein’s quantum entanglement concept
and extends the Nash equilibrium definitions in an abstract
complex-valued space.

Quote from the german summary of my second phd-thesis:

”Das Hauptanliegen dieser Arbeit liegt in einer zusammenfassenden,
mathematisch einwandfreien Darstellung der Theorie der
Gesellschaftsspiele auf quantentheoretischen, abstrakten
Hilbertschen Räumen. “
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Research Questions of the Talk

Mathematical description of Quantum Game Theory
What are the main mathematical concepts of quantum game theory?
How are the theories (Game Theory and Quantum Theory) unified?

Results for Quantum Games within different game classes
What are the main differences between classical and quantum game
theory. Is the underlying Nash equilibrium structure of (2 player)-(2
strategy) games changed within a quantum game theory-based
analysis?

Presentation of various applications
How can quantum game theory be applied to real game situations?
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Superpositionen von Eigenzuständen

Schrödingers Katze

Figure : Theoretische Versuchsanordnung
des Gedankenexperiments.

In einem geschlossenen Kiste
befindet sich ein instabiler
Atomkern, der innerhalb einer
bestimmten Zeitspanne mit einer
gewissen Wahrscheinlichkeit
zerfällt. Im Falle eines Zerfalls
werde Giftgas freigesetzt, was eine
im Raum befindliche Katze tötet.
Bevor ein Beobachter die Kiste
öffnet, schwebt der Zustand ψ der
Katze zwischen den
Eigenzuständen ’ψ1 := Lebend’
und ’ψ2 := Tot’.

ψ =
1√
2

(ψ1 + ψ2)
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Quantisierte Messgrößen

Beispiel: Das Wasserstoffatom

Figure :
Aufenthaltswahrscheinlichkeit des
Elektrons im Wasserstoffatom
(n=4,l=2,m=2). Quelle: Bernd Thaller,

Visual Quantum Mechanics

Der Zustand eines Elektrons im
Wasserstoffatom wird mit Hilfe der
stationären Schrödingergleichung
berechnet. Die messbaren Eigenzustände
des Elektrons (ψnlm(~r)) sind durch ihre
Quantenzahlen (n,l,m) quantisiert, d.h.
Messgrößen wie z.B. die Energie können
nur diskrete Werte annehmen. Der
allgemeine Elektronenzustand ergibt sich
durch Überlagerung (Superposition) der
Eigenzustände (anlm ∈ C).

ψ =
∞∑

n=1

n−1∑
l=0

l∑
m=−l

anlm ψnlm
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Welle-Teilchen-Dualismus

Das Doppelspaltexperiment

Figure : Beim Doppelspaltexperiment offenbaren
Teilchen ihre Welleneigenschaften. Quelle: Michael Craiss

1961 wurde das
Doppelspaltexperiment
mit Elektronen durch
Claus Jönsson
durchgeführt und im
September 2002 in einer
Umfrage der englischen
physikalischen
Gesellschaft in der
Zeitschrift ’Physics
World’ zum schönsten
physikalischen
Experiment aller Zeiten
gewählt.
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Das Einstein-Podolsky-Rosen Paradoxon

Figure : EPR Gedankenexperiment: Obwohl es keine messbare
Wechselwirkung zwischen den Teilchen A und B gibt, sind diese dennoch
mittel einer Quantenverschänkung verbunden.
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Classical (2 person)-(2 strategy) game

Figure : Game tree of a (2 person)-(2 strategy) game with payoff for
player A ($A) and player B ($B).
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Definition of a (2 player)-(2 strategy) game Γ

An unsymmetric (2× 2) game Γ is defined as ...

(2× 2) Game: Γ :=
(
{A,B} ,SA × SB , $̂A, $̂B

)
Set of pure strategies of player A and B: SA =

{
sA

1 , sA
2
}
, SB =

{
sB

1 , sB
2
}

Set of mixed strategies of player A and B: S̃A =
{

s̃A
1 , s̃A

2
}
, S̃B =

{
s̃B

1 , s̃B
2
}

Payoff matrix for player A: $̂A =

(
$A

11 $A
12

$A
21 $A

22

)
Payoff matrix for player B: $̂B =

(
$B

11 $B
12

$B
21 $B

22

)
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The mixed strategy payoff function $̃µ of player µ = A,B

Normalizing conditions for the mixed strategies of player µ:

s̃µ1 + s̃µ2 = 1 ∀µ = A,B s̃µ1 , s̃
µ
2 ∈ [0, 1]

The mixed strategy payoff function reduces to:

$̃µ : ([0, 1]× [0, 1])→ R

$̃µ(s̃A, s̃B) = $µ11s̃As̃B + $µ12s̃A(1− s̃B) +

+$µ21(1− s̃A)s̃B + $µ22(1− s̃A)(1− s̃B)

, where s̃A := s̃A
1 , s̃B := s̃B

1 , s̃A
2 = 1− s̃A

1 and s̃B
2 = 1− s̃B

1
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The mixed strategy payoff function $̃µ of player µ = A,B

Mixed strategy payoff function
$̃A
(

s̃A, s̃B
)

of player A
($A

11 = 8, $A
12 = 5, $A

21 = 7, $A
22 = 3)

Payoff $̃µ
(
s̃A, s̃B) as a function of

s̃A, s̃B ∈ [0, 1]:

$̃µ : ([0, 1]× [0, 1])→ R

$̃µ(s̃A
, s̃B ) = $

µ
11 s̃A s̃B + $

µ
12 s̃A(1− s̃B ) +

+$
µ
21(1− s̃A)s̃B + $

µ
22(1− s̃A)(1− s̃B )

, where s̃A := s̃A
1 , s̃B := s̃B

1 ,

s̃A
2 = 1− s̃A

1 and s̃B
2 = 1− s̃B

1

Payoff $̃µ
(
S̃A × S̃B

)
as a function

of the sets of mixed strategies for
player A and B:

$̃µ :
(
S̃A × S̃B

)
→ R

$̃µ((s̃A
1 , s̃A

2 ), (s̃B
1 , s̃B

2 )) = $
µ
11 s̃A

1 s̃B
1 + $

µ
12 s̃A

1 s̃B
2 +

+$
µ
21 s̃A

2 s̃B
1 + $

µ
22 s̃A

2 s̃B
2
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Nash equilibria (NE)

Nash equilibria and $̃µ
(

s̃A, s̃B
) A strategy combination (s̃A∗, s̃B∗) is

called a Nash equilibrium, if:

$̃A(s̃A∗
, s̃B∗) ≥ $̃A(s̃A

, s̃B∗) ∀ s̃A ∈ [0, 1]

$̃B (s̃A∗
, s̃B∗) ≥ $̃B (s̃A∗

, s̃B ) ∀ s̃B ∈ [0, 1]

A strategy combination (s̃A?, s̃B?) is
called an interior (mixed strategy)
Nash equilibrium, if:

∂$̃A(s̃A, s̃B )

∂ s̃A

∣∣∣
s̃B =s̃B?

= 0 ∀ s̃A ∈ [0, 1] , s̃B? ∈ ]0, 1[

∂$̃B (s̃A, s̃B )

∂ s̃B

∣∣∣
s̃A=s̃A?

= 0 ∀ s̃B ∈ [0, 1] , s̃A? ∈ ]0, 1[
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Evolutionary Game Theory

Replicatordynamics: The dynamical behavior of a population of players

dxA
i (t)

dt = xA
i (t)

[ m∑
l=1

$A
il xB

l (t)−
m∑

l=1

m∑
k=1

$A
kl xA

k (t) xB
l (t)

]
dxB

i (t)

dt = xB
i (t)

[ m∑
l=1

$B
li xA

l (t)−
m∑

l=1

m∑
k=1

$B
lk xA

l (t) xB
k (t)

]

The two population vectors ~xA and ~xB have to fulfill the normalizing conditions of
a unity vector

xµi (t) ≥ 0 and
m∑

i=1
xµi (t) = 1 ∀ i = 1, 2, ...,m , t ∈ R, µ = A,B
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Replicatordynamics of (2× 2) games

Replicatordynamics of unsymmetric (2× 2) games

dx(t)

dt
=
((

$A
11 + $A

22 − $A
12 − $A

21

) (
x(t)− (x(t))2

))
y(t) +

(
$A

12 − $A
22

) (
x(t)− (x(t))2

)
=: gA(x, y)

dy(t)

dt
=
((

$B
11 + $B

22 − $B
12 − $B

21

) (
y(t)− (y(t))2

))
x(t) +

(
$B

12 − $B
22

) (
y(t)− (y(t))2

)
=: gB (x, y)

Replicatordynamics of symmetric (2× 2) games

dx
dt

= x
[

$11(x − x2) + $12(1− 2x + x2) + $21(x2 − x) + $22(2x − x2 − 1)
]

= x
[

($11 − $21)(x − x2) + ($12 − $22)(1− 2x + x2)
]

=: g(x)

with: x = x(t) := x1(t) → x2(t) = (1− x(t))
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Payoff Transformation and Game classes

Nash equivalent games
The set of Nash equilibria, the dynamical behavior of evolutionary games and the
existence of evolutionary stable strategies (ESS) are unaffected by positive affine
payoff transformations and by additionally added constants, where the strategy
choice of the other players are fixed (see e.g. Weibull(1995)[14]). In the following
the second kind of payoff transformation will be used to transform the payoff
matrices in order to classify the games into different categories.

Symmetric payoff matrix after payoff transformation

A\B sB
1 sB

2

sA
1 ($11,$11) ($12,$21)

sA
2 ($21,$12) ($22,$22)

=⇒

A\B TrafosB
1

TrafosB
2

TrafosA
1 ($11 − $21︸ ︷︷ ︸

:=a
,$11 − $21︸ ︷︷ ︸

:=a
) (0,0)

TrafosA
2 (0,0) ($22 − $12︸ ︷︷ ︸

:=b
,$22 − $12︸ ︷︷ ︸

:=b
)
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Symmetric (2× 2) games: Dominant Class (a < 0, b > 0) or (b < 0, a > 0)

Dominant Game: a=3, b=-2, one pure NE and one ESS (sA
1 , sB

1 )

Prisoner’s Dilemma: a=-2, b=1, one pure NE and one ESS (sA
2 , sB

2 )



Introduction Quantum Theory Classical Game Theory Quantum Game Theory Applications Summary

Coordination (a, b > 0) and Anti-Coordination (a, b < 0) Class

Coordination game: a=3, b=1, two pure and one interior NE at s̃? = 1
4 ,

two ESS ((sA
1 , sB

1 ) and (sA
2 , sB

2 ))

Anti-Coordination game: a=-2, b=-2, two pure asymmetric NE and one
interior NE at s̃? = 1

2 , one ESS (s̃A? = 1
2 , s̃

B? = 1
2 )
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Game classes of unsymmetric (2 player)-(2 strategy) games

Corner Class (one ESS)
gx (x, y) (colored) and gy (x, y) (wired):

Phase diagram of xy -trajectories:

Saddle Class (two ESS)
gx (x, y) (colored) and gy (x, y) (wired):

Phase diagram of xy -trajectories:

Center Class (no ESS)
gx (x, y) (colored) and gy (x, y) (wired):

Phase diagram of xy -trajectories:
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Related Literature (I): Different Quantum Games
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Games and Quantum Strategies, PRL 83 (3077)

The Quantum Battle of Sexes
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http://xxx.lanl.gov/abs/quant-ph/9804010
http://xxx.lanl.gov/abs/quant-ph/9806088
http://xxx.lanl.gov/abs/quant-ph/9806088
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0004081
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0004081
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0004081
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0004081
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0004081
http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0004081
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http://xxx.lanl.gov/abs/quant-ph/0104006
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A 2-Player–2-Strategy-Quantumgame

Figure : |Ψ〉: Two-Player State, Ĵ (γ): Entangling Operator, γ: Strength
of Entanglement, ÛA, ÛB : Strategy Decision Operator of Player A and B
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The Two-Player Quantum Wavefunction |Ψ〉
The Two-Player Quantum State |Ψ〉

|Ψ〉 = Ĵ †
(
ÛA ⊗ ÛB

)
Ĵ |s1 s1〉

ÛA : Decision Operator of Player A
ÛB : Decision Operator of Player B
Ĵ : Entangling Operator
Ĵ † : Disentangling Operator

Ĵ |s1 s1〉 : Two-Player Initial State (|Ψ0〉)

In words ...
The setup of the quantum game begins with the choice of the initial
state |Ψ0〉. After the two players have chosen their individual
quantum strategies (ÛA := Û(θA, ϕA) and ÛB := Û(θB, ϕB)) the
disentangling operator Ĵ † is acting to prepare the measurement.



Introduction Quantum Theory Classical Game Theory Quantum Game Theory Applications Summary

The quantum decision state |ψ〉µ of player µ = A,B

To illustrate the operator formalism of quantum game theory and
the concept of quantum strategies, we want to focus at first on the
real and imaginary values of the two spinor components ψA

1 and ψA
2

of the of the state |ψ〉A of player A:

|ψ〉A = ψA
1

∣∣∣sA
1

〉
+ ψA

2

∣∣∣sA
2

〉
=

(
ψA

1
−ψA

2

)
∈ HA

∣∣∣sA
1

〉
=

(
1
0

)
,
∣∣∣sA

2

〉
=

(
0
−1

)

|ψ〉A = Û(θA, ϕA)
∣∣∣sA

1

〉
=

(
ei ϕA cos( θA2 )

−sin( θA2 )

)

Û(θ, ϕ) :=

(
ei ϕ cos( θ2 ) sin( θ2 )

−sin( θ2 ) e−i ϕ cos( θ2 )

)
∀ θ ∈ [0, π] ∧ ϕ ∈ [0, π2 ]
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The quantum decision state |ψ〉µ of player µ = A,B

Real and imaginary parts of |ψ〉A

Re(ψA
1 )

Re(ψA
2 )Im(ψA

1 )

φA

θA

Quantum state of player A:

|ψ〉A = ψ
A
1

∣∣sA
1

〉
+ ψ

A
2

∣∣sA
2

〉
=

(
ψA

1
−ψA

2

)
∈ HA

with:
∣∣sA

1

〉
=

(
1
0

)
,
∣∣sA

2

〉
=

(
0
−1

)
s1-quantum strategies and the
decision operator Û(θ, ϕ):

|ψ〉A = Û(θA, ϕA)
∣∣sA

1

〉
=

(
ei ϕA cos(

θA
2 )

−sin(
θA
2 )

)
Û(θ, ϕ) :=

(
ei ϕ cos( θ2 ) sin( θ2 )

−sin( θ2 ) e−i ϕ cos( θ2 )

)
∀ θ ∈ [0, π] ∧ ϕ ∈ [0,

π

2
]
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The 2-player state |Ψ〉 and the entangling operator Ĵ (γ)

|Ψ〉 = Ĵ †
(
ÛA ⊗ ÛB

)
Ĵ
∣∣∣sA

1 sB
1

〉

Ĵ := ei γ2 (ŝ1⊗ ŝ1) =



cos
(γ

2
)

0 0 i sin
(γ

2
)

0 cos
(γ

2
)
−i sin

(γ
2
)

0

0 −i sin
(γ

2
)

cos
(γ

2
)

0

i sin
(γ

2
)

0 0 cos
(γ

2
)



γ ∈ [0, π2 ] ,
∣∣∣sA

1 sB
1

〉
:=
∣∣∣sA

1

〉
⊗
∣∣∣sB

1

〉
=


1
0
0
0


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Interpretation

The most important, but also most difficult mathematical concept
in QGT is the two player quantum state |Ψ〉. It is formally
constructed with the use of the decision operators ÛA and ÛB of
player A and B and the entangling and disentangling operator Ĵ
and Ĵ †. |Ψ〉 is an spinor in a complex valued, 4-dimensional,
abstract mathematical space called the 2-player ”Hilbertspace” H.
The space of all conceivable decision paths is extended from the
purely rational, measurable space in the Hilbertspace of complex
numbers. Trough the concept of a potential entanglement of the
imaginary quantum strategy parts, it is possible to include cooperate
decision path, caused by cultural or moral standards. QGT is
therefore a model which goes beyond Homo Economicus and the
parameter γ, which is a measure for the strength of entanglement
and fellow feeling, describes how strongly the players behave as a
collektive state (Homo Sociologicus or Homo Transzendentalis).
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The extended payoff $µ(θA, ϕA, θB, ϕB) of player µ = A,B

The extended payoff $µ(θA, ϕA, θB, ϕB, γ) of player µ = A,B is an
amplification of the classical mixed strategy payoff function
$̃µ(s̃A, s̃B):

$A = $A
11 P11 + $A

12 P12 + $A
21 P21 + $A

22 P22

$B = $B
11 P11 + $B

12 P12 + $B
21 P21 + $B

22 P22

with: Pσσ, = | 〈σσ,|Ψ〉 |2 , σ =
{

sA
1 , sA

2

}
and σ, =

{
sB

1 , sB
2

}
Pσσ, are the real valued probabilities of finding the two player state
|Ψ〉 in the pure strategy Eigenstate |σσ,〉, e.g.

P12 := PsA
1 sB

2
=
∣∣∣ 〈sA

1 sB
2 |Ψ

〉 ∣∣∣2
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The extended payoff $µ(τA, τB) of player µ = A,B

In contrast to the classical mixed payoff functions ($̃A(s̃A, s̃B) and
$̃B(s̃A, s̃B)), which depend only on the two parameters s̃A and s̃B,
the quantum version of the mixed strategy payoff function depends
on five parameters; namely the four decision angles (θA, ϕA, θB and
ϕB) and the entangling parameter γ. In order to visualize the payoff
function as a surface in a three dimensional space it is necessary to
reduce the set of parameters in the final state:
|Ψ〉 = |Ψf (θA, ϕA, θB, ϕB)〉 → |Ψ(τA, τB)〉. The two strategy
angles θ and ϕ depend only on a single parameter τ ∈ [−1, 1].
Positive τ -values represent pure and mixed classical strategies,
whereas negative τ -values correspond to quantum strategies, where
θ = 0 and ϕ > 0. The whole strategy space is separated into four
regions, namely the absolute classical region (ClCl: τA, τB ≥ 0), the
absolute quantum region (QuQu: τA, τB < 0) and the two partially
classical-quantum regions (ClQu: τA ≥ 0 ∧ τB < 0 and QuCl:
τA < 0 ∧ τB ≥ 0).
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The extended payoff $µ(τA, τB) of player µ = A,B

Visualisationspace of $µ(τA, τB)

$µ(τA, τB)

τB
τA

The expected payoff within a
quantum version of a general 2-player
game:

$A = $A
11 P11 + $A

12 P12 + $A
21 P21 + $A

22 P22

$B = $B
11 P11 + $B

12 P12 + $B
21 P21 + $B

22 P22

with: Pσσ, = | 〈σσ,|Ψ〉 |2 , σ, σ
, = {s1, s2}

Reduction of quantum strategies:
|Ψ〉 = |Ψ(θA, ϕA, θB , ϕB )〉 → |Ψ(τA, τB )〉

{(τ π, 0) | τ ∈ [0, 1]}︸ ︷︷ ︸
classical region Cl

∧ {(0, τ
π

2
) | τ ∈ [−1, 0[}︸ ︷︷ ︸

quantum region Qu
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Quantum extension of dominant class games

Classical payoff for player A A\B sB
1 sB

2

sA
1 (10,10) (4,12)

sA
2 (12,4) (5,5)

Table : Payoffmatrix of a
dominant, prisoners dilemma
like game.

This dominant, prisoners
dilemma like game has only
one pure, symmetric Nash
equilibrium (sA

2 , sB
2 ) which is

the only ESS of the
evolutionary game.
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Quantum extension of dominant class games

Payoff of player A (colored) and player B
(wired) for γ = 0 (no entanglement)

$µ(τA, τB)

τB
τA

The diagram clearly exhibits that
the non-entangled quantum game
simply describes the classical
version of the prisoner’s dilemma
game. For the case, that both
players decide to play a quantum
strategy (τA < 0 ∧ τB < 0) their
payoff is equal to the case where
both players choose the classical
pure strategy s1
($A(τA = 0, τB = 0) = 10). The
classical Nash equilibrium ((sA

2 , sB
2 ),

the dominant strategy) corresponds
to the following
τ -values:(sA

2 , sB
2 )=̂(τA = 1, τB = 1).
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Quantum extension of dominant class games

Payoff of player A (colored) and player B
(wired) for γ = π

10 ≈ 0.31

$µ(τA, τB)

τB
τA

For the absolute classical region ClCl the shape
of the surfaces does not change, whereas for
the partially classical-quantum (ClQu and QuCl)
and absolute quantum region regions QuQu the
payoff structure changes due to a possible
interference of quantum strategies within
Hilbertspace. The structure of Nash-equilibria
does not change for the left picture, whereas for
the following pictures the previously present
dominant strategy of the prisoner’s dilemma
game has disappeared and a new, advisable
quantum Nash-equilibrium will appear at
(Q̂, Q̂=̂(τA = −1, τB = −1)). During the
transition from this figure to the next picture
two separate phenomena occur. At first, for an
entanglement value γ1 ≈ 0.37, the best
response for player A to the strategy
sB
2 =̂τB = 1 is no longer the strategy

sA
2 =̂τA = 1, as $A(τA = −1, τB = 1) ≈ 5.05

is now higher than $A(τA = 1, τB = 1) = 5.
Secondly, for an entanglement value γ2 ≈ 0.53,
the best response for player A to the strategy
Q̂B =̂τB = −1 is no longer the strategy
sA
2 =̂τA = 1, as $A(τA = 1, τB = −1) ≈ 9.96

is for γ2 = 0.53 lower than
$A(τA = −1, τB = −1) = 10.
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Quantum extension of dominant class games

Payoff of player A (colored) and player B
(wired) for γ = π

8 ≈ 0.52

$µ(τA, τB)

τB
τA

For the absolute classical region ClCl the shape
of the surfaces does not change, whereas for
the partially classical-quantum (ClQu and QuCl)
and absolute quantum region regions QuQu the
payoff structure changes due to a possible
interference of quantum strategies within
Hilbertspace. The structure of Nash-equilibria
did not change for the last figure, whereas for
this and thee following pictures the previously
present dominant strategy of the prisoner’s
dilemma game has disappeared and a new,
advisable quantum Nash-equilibrium has
appeared (Q̂, Q̂=̂(τA = −1, τB = −1)).
During the transition from the last picture to
this figure two separate phenomena occurred.
At first, for an entanglement value γ1 ≈ 0.37,
the best response for player A to the strategy
sB
2 =̂τB = 1 is no longer the strategy

sA
2 =̂τA = 1, as $A(τA = −1, τB = 1) ≈ 5.05

is now higher than $A(τA = 1, τB = 1) = 5.
Secondly, for an entanglement value γ2 ≈ 0.53,
the best response for player A to the strategy
Q̂B =̂τB = −1 is no longer the strategy
sA
2 =̂τA = 1, as $A(τA = 1, τB = −1) ≈ 9.96

is for γ2 = 0.53 lower than
$A(τA = −1, τB = −1) = 10.
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Quantum extension of dominant class games

Payoff of player A (colored) and player B
(wired) for γ = π

6 ≈ 0.94

$µ(τA, τB)

τB
τA

The results show, that a quantum
extension of a classical prisoner’s
dilemma game is able to change
the structure of Nash-equilibria,
and even previously present
dominant strategies could
become nonexistent, if the value
of entanglement increases further
than a defined γ-threshold.
Players with a higher strategic
entanglement value γ escape the
dilemma as they see the
advantage of the quantum
strategy combination (Q̂A, Q̂B),
which is measured as if both are
playing the classical strategy s2.
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Quantum extension of dominant class games

Payoff of player A (colored) and player B
(wired) for γ = π

2 ≈ 1.57

$µ(τA, τB)

τB
τA

The results show, that a quantum
extension of a classical prisoner’s
dilemma game is able to change
the structure of Nash-equilibria,
and even previously present
dominant strategies could
become nonexistent, if the value
of entanglement increases further
than a defined γ-threshold.
Players with a higher strategic
entanglement value γ escape the
dilemma as they see the
advantage of the quantum
strategy combination (Q̂A, Q̂B),
which is measured as if both are
playing the classical strategy s2.
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Quantum extension of coordination class games

Classical payoff for player A A\B sB
1 sB

2

sA
1 (10,10) (4,7)

sA
2 (7,4) (5,5)

Table : Payoffmatrix of a
coordination game.

This coordination game has
two pure, symmetric Nash
equilibria and one interior
NE at s? = 1

4 . The
evolutionary game game has
two ESSs.
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Quantum extension of coordination class games

Classical payoff for player A (projected) A\B sB
1 sB

2

sA
1 (10,10) (4,7)

sA
2 (7,4) (5,5)

Table : Payoffmatrix of a
coordination game.

This coordination game has
two pure, symmetric Nash
equilibria and one interior
NE at s? = 1

4 . The
evolutionary game game has
two ESSs.
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Quantum extension of coordination class games

Payoff of player A (colored) and player B
(wired) for γ = 0 (no entanglement)

$µ(τA, τB)

τB
τA

Again, the diagram clearly indicates
that the non-entangled quantum
game is identical to the classical
version of the underlying
coordination game. For the case,
that both players decide to play a
quantum strategy (τA < 0∧ τB < 0)
their payoff is equal to the case
where both players choose the
classical pure strategy s1
($A(τA = 0, τB = 0) = 10), with
the overall highest possible payoff.
The classical pure Nash equilibria
correspond to the following
τ -values: (sA

1 , sB
1 )=̂(τA = 0, τB = 0)

and (sA
2 , sB

2 )=̂(τA = 1, τB = 1),
whereas the classical mixed strategy
equilibrium is at:
τ? = 2

π
arccos(

√
1
4 ) = 2

3 .
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Quantum extension of coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

10 ≈ 0.31

$µ(τA, τB)

τB
τA

Even for tiny values of γ a
new quantum
Nash-equilibrium appears
(τA = −1, τB = −1).

At moderate values of γ the
low payoff evolutionary
stable strategy
(τA = 1, τB = 1) disappears.

The specific γ-value at
which this disappearance
happens, depends on the
whole set of payoff
parameters and not only on
a and b.
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Quantum extension of coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

8 ≈ 0.52

$µ(τA, τB)

τB
τA

Even for tiny values of γ a
new quantum
Nash-equilibrium appears
(τA = −1, τB = −1).

At moderate values of γ the
low payoff evolutionary
stable strategy
(τA = 1, τB = 1) disappears.

The specific γ-value at
which this disappearance
happens, depends on the
whole set of payoff
parameters and not only on
a and b.
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Quantum extension of coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

6 ≈ 0.94

$µ(τA, τB)

τB
τA

Even for tiny values of γ a
new quantum
Nash-equilibrium appears
(τA = −1, τB = −1).

At moderate values of γ the
low payoff evolutionary
stable strategy
(τA = 1, τB = 1) disappears.

The specific γ-value at
which this disappearance
happens, depends on the
whole set of payoff
parameters and not only on
a and b.
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Quantum extension of coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

2 ≈ 1.57

$µ(τA, τB)

τB
τA

Even for tiny values of γ a
new quantum
Nash-equilibrium appears
(τA = −1, τB = −1).

At moderate values of γ the
low payoff evolutionary
stable strategy
(τA = 1, τB = 1) disappears.

The specific γ-value at
which this disappearance
happens, depends on the
whole set of payoff
parameters and not only on
a and b.
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Quantum extension of anti-coordination class games

Classical payoff for player A A\B sB
1 sB

2

sA
1 (10,10) (7,12)

sA
2 (12,7) (5,5)

Table : Payoffmatrix of a
coordination game.

This anti-coordination game
has two pure, unsymmetric
Nash equilibria and one
interior NE at s? = 1

2 . The
evolutionary game game has
one mixed strategy ESS.
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Quantum extension of anti-coordination class games

Classical payoff for player A (projected) A\B sB
1 sB

2

sA
1 (10,10) (7,12)

sA
2 (12,7) (5,5)

Table : Payoffmatrix of a
coordination game.

This anti-coordination game
has two pure, unsymmetric
Nash equilibria and one
interior NE at s? = 1

2 . The
evolutionary game game has
one mixed strategy ESS.
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Quantum extension of anti-coordination class games

Payoff of player A (colored) and player B
(wired) for γ = 0

$µ(τA, τB)

τB
τA

Beside the mixed strategy
evolutionary stable strategy,
a new quantum ESS appears
at a specific γ-value.

For details see:

M. Hanauske, Advances in Evolutionary
Game Theory, 2009, Lecture at the
’Université Lumière Lyon 2’ in Lyon,
France (MINERVE Exchange Program);
Slides and additional material
M. Hanauske, J. Kunz, S. Bernius, and
W. König. ,Doves and hawks in
economics revisited: An evolutionary
quantum game theory-based analysis of
financial crises. , 2009, to appear in
Physica A, arXiv:0904.2113,
RePEc:pra:mprapa:14680 and
SSRNid :1597735 .

http://evolution.wiwi.uni-frankfurt.de/Lyon2009/
http://arxiv.org/abs/0904.2113
http://ideas.repec.org/p/pra/mprapa/14680.html
http://ssrn.com/abstract=1597735
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Quantum extension of anti-coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

10 ≈ 0.31

$µ(τA, τB)

τB
τA

Beside the mixed strategy
evolutionary stable strategy,
a new quantum ESS appears
at a specific γ-value.

For details see:

M. Hanauske, Advances in Evolutionary
Game Theory, 2009, Lecture at the
’Université Lumière Lyon 2’ in Lyon,
France (MINERVE Exchange Program);
Slides and additional material
M. Hanauske, J. Kunz, S. Bernius, and
W. König. ,Doves and hawks in
economics revisited: An evolutionary
quantum game theory-based analysis of
financial crises. , 2009, to appear in
Physica A, arXiv:0904.2113,
RePEc:pra:mprapa:14680 and
SSRNid :1597735 .

http://evolution.wiwi.uni-frankfurt.de/Lyon2009/
http://arxiv.org/abs/0904.2113
http://ideas.repec.org/p/pra/mprapa/14680.html
http://ssrn.com/abstract=1597735
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Quantum extension of anti-coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

8 ≈ 0.52

$µ(τA, τB)

τB
τA

Beside the mixed strategy
evolutionary stable strategy,
a new quantum ESS appears
at a specific γ-value.

For details see:

M. Hanauske, Advances in Evolutionary
Game Theory, 2009, Lecture at the
’Université Lumière Lyon 2’ in Lyon,
France (MINERVE Exchange Program);
Slides and additional material
M. Hanauske, J. Kunz, S. Bernius, and
W. König. ,Doves and hawks in
economics revisited: An evolutionary
quantum game theory-based analysis of
financial crises. , 2009, to appear in
Physica A, arXiv:0904.2113,
RePEc:pra:mprapa:14680 and
SSRNid :1597735 .

http://evolution.wiwi.uni-frankfurt.de/Lyon2009/
http://arxiv.org/abs/0904.2113
http://ideas.repec.org/p/pra/mprapa/14680.html
http://ssrn.com/abstract=1597735
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Quantum extension of anti-coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

6 ≈ 0.94

$µ(τA, τB)

τB
τA

Beside the mixed strategy
evolutionary stable strategy,
a new quantum ESS appears
at a specific γ-value.

For details see:

M. Hanauske, Advances in Evolutionary
Game Theory, 2009, Lecture at the
’Université Lumière Lyon 2’ in Lyon,
France (MINERVE Exchange Program);
Slides and additional material
M. Hanauske, J. Kunz, S. Bernius, and
W. König. ,Doves and hawks in
economics revisited: An evolutionary
quantum game theory-based analysis of
financial crises. , 2009, to appear in
Physica A, arXiv:0904.2113,
RePEc:pra:mprapa:14680 and
SSRNid :1597735 .

http://evolution.wiwi.uni-frankfurt.de/Lyon2009/
http://arxiv.org/abs/0904.2113
http://ideas.repec.org/p/pra/mprapa/14680.html
http://ssrn.com/abstract=1597735
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Quantum extension of anti-coordination class games

Payoff of player A (colored) and player B
(wired) for γ = π

2 ≈ 1.57

$µ(τA, τB)

τB
τA

Beside the mixed strategy
evolutionary stable strategy,
a new quantum ESS appears
at a specific γ-value.

For details see:

M. Hanauske, Advances in Evolutionary
Game Theory, 2009, Lecture at the
’Université Lumière Lyon 2’ in Lyon,
France (MINERVE Exchange Program);
Slides and additional material
M. Hanauske, J. Kunz, S. Bernius, and
W. König. ,Doves and hawks in
economics revisited: An evolutionary
quantum game theory-based analysis of
financial crises. , 2009, to appear in
Physica A, arXiv:0904.2113,
RePEc:pra:mprapa:14680 and
SSRNid :1597735 .

http://evolution.wiwi.uni-frankfurt.de/Lyon2009/
http://arxiv.org/abs/0904.2113
http://ideas.repec.org/p/pra/mprapa/14680.html
http://ssrn.com/abstract=1597735
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PHD-Thesis: Evolutionäre Quanten Spieltheorie im
Kontext sozio-ökonomischer Systeme

Articles of my cumulative PHD-Thesis
Article 0: Evolutionary Quantum Game Theory
Article 1: Quantum Game Theory and Open Access Publishing
Article 2: Evolutionary Quantum Game Theory and Scientific
Communication
Article 3: Doves and hawks in economics revisited: An
evolutionary quantum game theory-based analysis of financial
crises
Article 4: Experimental Validation of Quantum Game Theory
Article 5: Evolutionary Game Theory and Complex Networks of
Scientific Information
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Summary
Summary of the talk
Quantum game theory is a mathematical and conceptual
amplification of classical game theory. The space of all conceivable
decision paths is extended from the purely rational, measurable
space in the Hilbertspace of complex numbers. Trough the concept
of a potential entanglement of the imaginary quantum strategy
parts, it is possible to include corporate decision path, caused by
cultural or moral standards. If this strategy entanglement is large
enough, then, additional Nash-equilibria can occur, previously
present dominant strategies could become nonexistent and new
evolutionary stable strategies can appear.
Within this talk the framework of Quantum Game Theory was
described in detail. The formal mathematical model, the different
concepts of equilibria and the various classes of quantum games
have been defined, explained and visualized to understand the main
ideas of Quantum Game Theory. Additionally some applications
where discussed at the end of the talk.
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