
Chapter 4

Self Organization and Pattern
Formation

Pattern formation occurs when complex spatio-temporal structures, like ani-
mal markings, result from seemingly simple dynamical evolution processes.
Reaction-diffusion systems, like the Fisher equation, constitute in this con-
text classical examples for the notion of self organization. A core concept
for understanding the occurrence of non-trival spatio-temporal patterns is
the Turing instability, which will be discussed together with the notion of
self-stabilizing wavefronts.

Further prominent examples of self-organizing processes treated in this
chapter involve collective decision making and swarm intelligence, as occur-
ring in social insect and flocking birds, information offloading in terms of
stigmergy, opinion dynamics and the physics of traffic flows, including the
ubiquitous phenomenon of self-organized traffic congestions.

4.1 Interplay Between Diffusion and Reaction

Processes characterized by the random motion of particles or agents are said
to be diffusive, compare Sect. ??, and described by the diffusion equation

∂

∂t
ρ(x, t) = D∆ρ(x, t), ∆ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (4.1)

with D > 0 denoting the diffusion constant, ∆ the Laplace operator and
ρ(x, t) the density of walkers at any given point (x, t) in space and time.

Reaction-Diffusion Systems The diffusion equation (4.1) describes con-
serving processes and the overall number of particles

∫
dxρ(x, t) remains

constant. With
∂

∂t
ρ(x, t) = R(ρ) + D∆ρ(x, t) (4.2)
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one denote a reaction-diffusion system, where R(ρ) constitutes the reaction of
the system to the current state ρ. In biological settings ρ typically stands for
the population density and R(ρ) for reproduction processes, in the context
of chemical reactions ρ is a measure for the relative concentration of a given
substance whereas R(ρ) functionally describes effective reaction rates.

Fisher Equation Considering a one-dimensional system and logistic growth
for the reaction term one obtains the Fisher equation

ρ̇ = rρ(1− ρ) + Dρ′′, ρ ∈ [0, 1] , (4.3)

which describes a reproductive and diffusive species in an environment with
spatially local resource limitation.

Normal Form All one-component reaction-diffusion equations can be cast
into a dimensionless normal form, by rescaling the time and space coordinates
appropriately via

t = αt̃, x = βx̃,
∂

∂t
=

1

α

∂

∂t̃
,

∂2

∂x2
=

1

β2

∂2

∂x̃2
,

which leads to, for the Fisher equation (4.3),

∂ρ

∂t̃
= αrρ(1− ρ) +

αD

β2

∂2ρ

∂x̃2
, αr = 1,

αD

β2
= 1 .

It is hence sufficient to consider the normal form

ρ̇ = ρ(1− ρ) + ρ′′ (4.4)

of the Fisher equation.

Saturation and Wavefront Propagation The reaction term R(ρ) =
ρ(1− ρ) of the Fisher equation is strictly positive for ρ ∈ [0, 1] and hence

lim
t→∞

ρ(x, t) = 1 ,

viz the system saturates. The question of interest is however how saturation
is achieved when starting from a local population ρ(x, 0), a simulation is pre-
sented in Fig. 4.1. The system develops wavefronts with a characteristic shape
and velocity. In a biological setting this corresponds to an expansion wave
allowing an initial local population to invade ballistically the uninhabited
regions of the surrounding ecosystem.

This is an interesting observation, since diffusion processes alone (in the
absence of a reaction term) would lead only to an expansion ∼

√
t, see

Sect. ??, whereas ballistic propagation is linear in time.
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Fig. 4.1 Simulation of the Fisher reaction-diffusion equation (4.4). Plotted is ρ(x, t) for

t = 0, . . . , 8. For the initial distribution ρ(x, 0) a Gaussian has been taken, which does
not correspond to the natural line-form, but already at t = 1 the system has relaxed. The

wavefronts propagate asymptotically with velocities ±2

4.1.1 Travelling Wavefronts in the Fisher Equation

In order to describe the propagation of wavefronts in a diffusion-reaction
system we consider shape-invariant propagating solutions of the form

ρ(x, t) = u(x− ct), ρ̇ = −cu ′, ρ′′ = u′′ . (4.5)

This ansatz leads, for the Fisher equation (4.4), to the two-component ordi-
nary differential equation

u′′ + cu ′ + u(1− u) = 0,

{
u′ = v
v′ = −cv − u(1− u)

}
, (4.6)

with fixpoints u∗ = (u∗, v∗),

u∗
0 = (0, 0), u∗

1 = (1, 0) . (4.7)

Minimal Propagation Velocity For the stability of the trivial fixpoint
u∗
0 = (0, 0) one expands (4.6) for small (u, v),(

u′

v′

)
=

(
0 1
−1 −c

)(
u
v

)
, λ(λ+ c) + 1 = 0 ,

where λ is an eigenvalue of the Jacobian (see also Sect. ??), given by

λ± =
1

2

(
−c±

√
c2 − 4

)
, c ≥ 2 . (4.8)
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Fig. 4.2 Phase space trajectories of the travelling-wave solution ρ(x, t) = u(z), with

z = x− ct and v = u′, as determined by (4.6). The shape of the propagating wavefront is
determined by the heteroclinic trajectory emerging from the saddle (1, 0) and leading to

the stable fixpoint (0, 0)

A complex eigenvalue would lead to a spiral around u∗
0 = (0, 0), which is

not possible since u ∈ [0, 1] is strictly positive. Hence c = 2 is the mini-
mal occurring propagation velocity. The trivial fixpoint (0, 0) is stable, since√
c2 − 4 < c for c ≥ 2 and hence λ± < 0 (Fig. 4.2).

Saddle Restpoint The eigenvalues of the u∗
1 = (1, 0) are given by

d

dz

(
u− 1
v

)
=

(
0 1
1 −c

)(
u− 1
v

)
, λ± =

1

2

(
−c±

√
c2 + 4

)
,

when denoting u = u(z). The fixpoint (1, 0) is hence a saddle, with λ− < 0
and λ+ > 0. The unstable direction u∗(z), emerging from the saddle and
leading to the stable fixpoint (0, 0) (viz the heteroclinic trajectory) is the
only trajectory in phase space fulfilling the conditions

lim
z→−∞

u∗(z) = 1, lim
z→∞

u∗(z) = 0, lim
z→±∞

v∗(z) = 0 (4.9)

characterizing a propagating wavefront. The lineshape u∗(z) of the wavefront
can be evaluated numerically, see Fig. 4.3.

Exact Particular Solution of the Fisher Equation A special travelling-
wave solution for the Fischer equation (4.4) is given by

ρ∗(x, t) = σ2(x− ct), σ(z) =
1

1 + eβz
(4.10)

where σ(βz) is called sigmoidal or Fermi function. It’s derivatives are

σ′ =
−βeβz

(1 + eβz)
2 = −βσ(1− σ), σ′′ = β2(1− 2σ)σ(1− σ) , (4.11)
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Fig. 4.3 Numerical result for the minimal velocity (c = 2) wavefront solution u∗(z), com-

pare Eq. 4.9, of the Fisher reaction-diffusion equation (4.4). For comparison the wavefront
for a slightly larger velocity c = 5/

√
6 ≈ 2.041 has been plotted, for which the shape can be

obtained analytically, see Eq. (4.10). The dashed lines indicates u = 1/4, which has been

used to align the respective horizontal offsets

and hence

∂ρ∗

∂t
= 2cβσ2(1−σ), ∂2ρ∗

∂x2
=

∂

∂x
(−2βσ2)(1−σ) = β2(4σ−6σ2)σ(1−σ) .

The solution ρ∗ fulfills the Fisher equation,

∂ρ∗

∂t
− ∂2ρ∗

∂x2
= σ2(1− σ)

[
2cβ − β2(4− 6σ)

]︸ ︷︷ ︸
!
=(1+σ)

!
= σ2(1− σ2) ≡ ρ∗(1− ρ∗) ,

if

1 = 6β2, 1 = 2cβ − 4β2 = 2cβ − 4

6
, 2cβ =

10

6
=

5

3
,

which determines the two free parameters β and c as

β =
1√
6
, c =

5

6β
=

5√
6

≈ 2.041 , (4.12)

with the propagation velocity c of ρ∗(x, t) being very close to the lower bound
c = 2 for the allowed velocities. The resulting lineshape is nearly identical to
the numerically-obtained minimal-velocity shape for the propagating wave-
front, as shown in Fig. 4.3.

Exponential Falloff of Wavefronts The population density ρ(x, t) = u(z)
become very small for large z = x − ct an and the quadratic term in (4.6)
may be neglected,

u′′ + cu ′ + u ≈ 0,

with the solution
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u(z) = e−az, a2 − ca+ 1 = 0, c = a+
1

a
. (4.13)

The forward tails of all propagating are hence exponential, with the mini-
mal velocity c corresponding to a = 1. Relation (4.13) holds also the exact
solution (4.10), for which a = 2β,

c =
1

2β
+ 2β =

1 + 4β2

2β
=

6 + 4

2
√
6

=
5√
6
,

in agreement with (4.12), when using β = 1/
√
6.

4.1.2 Sum Rule for the Shape of the Wavefront

The travelling-wave equation (4.6),

c(u′)2 = −
(
u(1−u)+u′′)u′, lim

z→∞
u(z) = 0, lim

z→−∞
u(z) = 1 , (4.14)

may be used to derive a sum rule for the shape u(z) of the wavefront by
integrating (4.14),

c

∫ z

−∞

(
u′(w)

)2
dw = A+

u3(z)

3
− u2(z)

2
−
(
u′(z)

)2
2

. (4.15)

The integration constant A is determined by considering z → −∞ and taking
into account that limz→±∞ u′(z) = 0,

A =
1

2
− 1

3
=

1

6
,

∫ ∞

−∞

(
u′(w)

)2
dw =

1

6c
, (4.16)

where the second equation is the sum rule for u′. The wavefront is steepest
for the minimal velocity c = 2.

Sum rule for Generic Reaction Diffusion Systems Sum rules equiva-
lent to (4.16) can be derived for any integrable reaction term R(ρ) in (4.2).
One finds, by generalizing the derivation leading to (4.16),∫ ∞

−∞

(
u′(w)

)2
dw =

1

c

∫ 1

0

R(ρ)dρ . (4.17)

In biological setting the reaction term corresponds to the reproduction rate.
It is hence generically non-negative, R(ρ) ≥ 0 and the right-hand side of the
sum rule (4.17) positive. Note, that the diffusion constant D has no influence
on the sum rule.
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Sum rule for the Exact Particular Solution We verify that the sum
rule (4.16) for the Fisher equation is satisfied by the special solution (4.10),

u∗(z) = σ2(z), σ(z) =
1

1 + eβz
σ′ = −βσ(1− σ) .

With u′∗ = −2βσ2(1− σ) we integrate∫ ∞

−∞

(
u′∗(w)

)2
dw =

∫ ∞

−∞
(−4β)σ3(1− σ) (−β)σ(1− σ)︸ ︷︷ ︸

σ′

dw

= 4β

(
1

4
− 1

5

)
=
β

5
=
β2

5β
=

1

6c
,

where we have used β2 = 1/6 and c = 5β, see (4.12). Note that only the
lower bound z → −∞ contributes to above integral.

4.1.3 Self-Stabilization of Travelling Wavefronts

The Fisher equation ρ̇ = ρ(1−ρ)+ρ′′ supports travelling wavefront solutions
ρ(x, t) = u(x− ct) for any velocity c ≥ 2. The observed speed of a wavefront
may either depend on the starting configuration ρ(x, 0) or may self-organize to
a universal value. We use perturbation theory in order to obtain an heuristic
insight into this issue.

Solution of the Linearized Fischer Equation The solution of the lin-
earized Fischer equation

ρ̇ = rρ + ρ′′, r = 1 (4.18)

can be constructed for arbitrary initial conditions p0(x) = ρ(x, 0) and is given
for r = 0 by the solution of the diffusion equation,

ρ0(x, t) =

∫
dy Φ(x− y, t) p0(y), Φ(x, t) =

1√
4πt

e−x2/(4t) , (4.19)

with limt→0 Φ(x, t) = δ(x), see Sect. ??. For r = 1 the solution of (4.18) is

ρ(x, t) = etρ0(x, t), ρ(x, 0) = p0(x) , (4.20)

corresponding to an exponentially growing diffusive behavior.

Velocity Stabilization and Self Organization The kernel of (4.20)

etΦ(x, t) ∝ e−x2/(4t)+t = e−(x2−4t2)/(4t) = e−(x−2t)(x+2t)/(4t) (4.21)
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has a left- and a right propagating front travelling with propagation speeds
c = ±2. The envelopes of the respective wavefronts are time dependent and
do not show the simple exponential tail (4.13), as exponential falloffs are
observed only for solutions ρ(x, t) = u(x−ct) characterized by a single veloc-
ity c.

– Ballistic Transport
The expression (4.21) shows that the interplay between diffusion and expo-
nential growth, the reaction of the system, leads to ballistic transport.

– Velocity Selection
The perturbative result (4.21) indicates, that the minimal velocity |c| = 2
is achieved for the wavefront when starting from an arbitrary localized
initial state p0(x), since limt→0 e

tΦ(x, t) = δ(x).
– Self Organization

Propagating wavefronts with any c ≥ 2 are stable solutions of the Fisher
equation, but the system settles to c = 2 for localized initial conditions.
The stabilization of a non-trivial dynamical property for a wide range of
starting conditions may be considered as an example of self organization.

Above considerations did regard the speed c of the travelling wavefront, but
do not make any direct statement regarding the lineshape.

Stability Analysis of the Wavefront In order to examine the stability of
the shape of the wavefront we consider

ρ(x, t) = u(z) + ϵψ(z)e−cz/2e−λt, z = x− ct , (4.22)

where the second term with ϵ ≪ 1 is a perturbation to the solution u(z) of
the travelling wave equation (4.6). The derivatives are

ρ̇ = −cu ′ + ϵ
[
(c2/2− λ)ψ − cψ′]e−cz/2e−λt

ρ′ = u′ + ϵ
[
− cψ/2 + ψ′]e−cz/2e−λt

ρ′′ = u′′ + ϵ
[
c2ψ/4− cψ′ + ψ′′]e−cz/2e−λt

and we find

ρ̇− ρ′′ = −
[
cu ′ + u′′

]
+ ϵ
[
(c2/4− λ)ψ − ψ′′]e−cz/2e−λt

ρ(1− ρ) ≈ u(1− u) + ϵ
[
1− 2u

]
ψe−cz/2e−λt .

Wavefront Self-Stabilization With above results the Fisher equation ρ̇−
ρ′′ = ρ(1− ρ) reduces to[

− d2

dz 2
+ V (z)

]
ψ(z) = λψ(z), V (z) = 2u(z) +

c2

4
− 1 , (4.23)

to order O(ϵ). This expression corresponds to a time-independent one-
dimensional Schrödinger equation for a particle with a massm = ℏ2/2 moving
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in a potential
V (z) ≥ 0, for c ≥ 2 .

The potential V (z) is strictly positive since u(z) ∈ [0, 1] and the eigenvalues λ
are hence also positive. The perturbation term in (4.22) consequently decays
with t→ ∞ and the wavefront self-stabilizes.

This result would be trivial if it would be known a priori that the wavefront
equation u′′ + cu ′ + u(1 − u) = 0 has a unique solution u(z). In this case
all states of the form of (4.22) would need to contract to u(z). The stability
condition (4.23) indicates that the travelling-wavefront solutions to the Fisher
equation may be indeed unique.

4.2 Interplay Between Activation and Inhibition

In chemical reaction systems one reagent may activate or inhibit the pro-
duction of the other components, leading to non-trivial chemical reaction
dynamics. Chemical reagents typically also diffuse spatially and the inter-
play between the diffusion process and the chemical reaction dynamics may
give rise to the development to spatially structured patterns.

4.2.1 Turing Instability

The reaction-diffusion system (4.2) contains additively two terms, the reac-
tion and the diffusion term. Diffusion alone leads generically to an homoge-
neous steady state.

For the reaction terms considered in Sect. 4.1 the reference state ρ = 0 was
unstable against perturbations. Will now consider reaction terms for which
the reference homogeneous state is however stable. Naively one would expect
a further stabilization of the reference state, but this is not necessarily the
case.

Turing instability. The interaction of two processes, which separately would stabi-
lize a given homogeneous reference state, can lead to an instability.

The Turing instability is thought to be the driving force behind the for-
mation of spatio-temporal patterns observed in many physical and biological
settings, such as the stripes of a zebra.

Turing Instability of Stable Oscillators As a first example we consider a
linear two-dimensional dynamical system composed of two stable oscillators,

ẋ = Ax, A1 =

(
−ϵ1 1
−a −ϵ1

)
, A2 =

(
−ϵ2 −a
1 −ϵ2

)
. (4.24)
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Here 0 < a < 1 and ϵα > 0, for α = 1, 2. The eigenvalues for the matrices Aα

and A = A1 +A2 are

λ±(Aα) = −ϵα ± i
√
a, λ±(A) = −(ϵ1 + ϵ2)± (1− a) .

The origin of the system ẋ = (A1 +A2)x hence becomes a saddle if 1− a >
ϵ1 + ϵ2, an instance of a Turing instability: Superposing two stable vector
fields may generate unstable directions.

Eigenvalues of Two-Dimensional Matrices We remind ourselves that
the eigenvalues λ± of a 2× 2 matrix A can be written in terms of the trace
a+ b and of the determinant ∆ = ab − cd ,

A =

(
a d
c b

)
, λ± =

a+ b

2
± 1

2

√
(a+ b)2 − 4∆ . (4.25)

For negative determinants ∆ < 0 the system has both an attracting and a
repelling eigenvalue, when using the terminology suitable for the classification
of fixpoints, compare Sect. ??.

Superposing a Stable Node and a Stable Focus We now consider what
may happen when superimposing a stable node and a stable focus, the later
being defined as

A1 =

(
−ϵa 1
−1 ϵb

)
, ∆1 = 1− ϵaϵb > 0, (ϵb − ϵa)

2 < 4∆1 . (4.26)

with ϵa > ϵb > 0. The system ẋ = A1x is then a stable focus when the trace
ϵb − ϵa < 0 is negative, compare Eq. (4.25), having two complex conjugate
eigenvalues with a negative real part. Possible values are, e.g. ϵa = 1/2 and
ϵb = 1/4.

We now add a stable node

A2 =

(
−a 0
0 −b

)
, A =

(
−ϵa − a 1

−1 ϵb − b

)
. (4.27)

Can we select a, b > 0 such that A = A1 + A2 becomes a saddle? The
determinant ∆ of A

1− (ϵa + a)(ϵb − b)

should then become negative, compare Eq. (4.25). This is clearly possible for
b < ϵb and a large enough a.

Turing Instability and Activator-Inhibitor Systems The interplay of
one activator and one inhibitor often results in a stable focus, as described
by (4.26). Diffusion processes correspond, on the other side, to stable nodes,
such as A2 in Eq. (4.27). The Turing instability possible when superimposing
a stable node and a stable focus is hence of central relevance for chemical
reaction-diffusion systems.
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4.2.2 Pattern Formation

We now consider a generic reaction-diffusion system of type (4.2)

ρ̇ = f(ρ, σ) +Dρ∆ρ
σ̇ = g(ρ, σ) +Dσ∆σ

(4.28)

containing two interacting components, ρ = ρ(x, t) and σ = σ(x, t), charac-
terized by respective diffusion constants Dρ, Dσ > 0. We assume, that the
reaction system R = (f, g) has a stable homogeneous solution with steady-
state densities ρ0 and σ0 respectively, together with the stability matrix

A1 =

(
fρ fσ
gρ gσ

)
, gρfσ < 0, fρ + gσ < 0 (4.29)

which we assume to model an activator-inhibitor system characterized by
gρfσ < 0. Here fρ = ∂f/∂ρ, etc, denotes the relevant partial derivatives. We
may always rescale the fields ρ and σ such that |gρ| = 1 = |fσ| and (4.29) is
then identical with the previously used representation (4.26).

Fourier Expansion of Perturbations The reaction term R = (f, g) is
independent of x and we may hence expand the perturbation of the fields
around the equilibrium state in term of spatial Fourier components. Equiva-
lently we consider with

ρ(x, t) = ρ0 + e−ik·x δρ(t)
σ(x, t) = σ0 + e−ik·x δσ(t)

(4.30)

a single harmonic deviation from the equilibrium state (ρ0, σ0). We obtain(
δρ̇
δσ̇

)
= A

(
δρ
δσ

)
, A2 =

(
−Dρk

2 0
0 −Dσk

2

)
, (4.31)

where the overall stability matrix A = A1 + A2 is given by the linear super-
position of a stable focus A1 and a stable node A2.

Spatio-Temporal Turing instability For concreteness we assume now
that fρ < 0 and gσ > 0, in analogy with (4.26), together with 0 > gσfρ =
−|gσfρ|. The determinant ∆ of A is then

∆ = |fσgρ| −
(
|fρ|+Dρk

2
)(
|gσ| −Dσk

2
)
. (4.32)

A Turing instability occurs when the determinant ∆ becomes negative, which
is possible if the respective diffusion constants Dρ and Dσ are different in
magnitude.

– When the determinant (4.32) is reduced the homogeneous fixpoint solu-
tion changes first from a stable focus to a stable node as evident from
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Fig. 4.4 The determinant ∆ of the Turing bifurcation matrix, see Eq. (4.32), for a range

d = Dσ/Dρ of ratios of the two diffusion constants. For large d → 1 the determinant
remains positive, becoming negative for a finite interval of wavevectors k when d becomes

small enough. With decreasing size of the determinant the fixpoint changes from a sta-

ble focus (two complex conjugate eigenvalues with negative real components) to a stable
node (two negative real eigenvalues) and to a saddle (a real positive and a real negative

eigenvalue), compare Eq. (4.25)

expression (4.25). The instability at ∆ = 0 is hence a transition from a
stable focus to a saddle, as illustrated in Fig. 4.4.

– The contribution A2 of the diffusion induces the transition and can be
hence regarded as a bifurcation parameter.

Diffusion processes may act as bifurcation parameters also within other bifur-
cation scenarios, like a Hopf bifurcation, as we will discuss in more detail in
Sect. 4.2.3.

Mode Competition For a real-world chemical reaction system the param-
eters are fixed and a range of Fourier modes with a negative determi-
nant (4.32), and corresponding positive Lyapunov exponents (4.25), will start
to grow and compete with each others. The shape of the steady-state pattern,
if any, will be determined in the end by the non-linearities of the reaction
term.

4.2.3 The Gray-Scott Reaction Diffusion System

Several known examples of reaction-diffusion models showing instabilities
towards the formation of complex spatio-temporal patterns are characterized
by contributions ±ρσ2 to the reaction term,

ρ̇ = −ρσ2 + F (1− ρ) + Dρ∆ρ
σ̇ = ρσ2 − (F + k)σ + Dσ∆σ

(4.33)

corresponding to a chemical reaction needing two σ-molecules and one ρ-
molecule. The remaining contributions to the reaction term in (4.33) serves
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for the overall mass balance, which can be implemented in various ways. In
Eq. (4.33) the Gray-Scott system is given, a slightly different choice for the
mass conservation terms would lead to the Brusselator model. The replen-
ishment rate for the reactant ρ < 1 is given by F , with σ being lost to the
environment at a rate K = F + k.

Saddle-Node Bifurcation The three fixpoints of the reaction term of
Gray-Scott system (4.33) are p∗

i = (ρ∗i , σ
∗
i ), with p∗

0 = (1, 0) and

ρ∗i σ
∗
i = K, Fρ∗i +Kσ∗

i = F, i = 1, 2 . (4.34)

These fixpoint conditions lead to

ρ∗1,2 = (1± a)/2, σ∗
1,2 = (1∓ a)F/(2K), a =

√
1− 4K2/F .

The trivial fixpoint p∗
0 has a diagonal Jacobian with eigenvalues −F and −K

respectively. It is always stable, even in the presence of diffusion. For

F > 4K2 = 4(k + F )2, kc =
√
Fc/2− Fc , (4.35)

and positive k, only p∗
0 exists and a saddle-node bifurcation occurs along the

critical line (kc, Fc), when a → 0 and p∗
1 and p∗

2 merge and annihilate each
other. Compare Fig. 4.5 and Sect. ??.

The Saddle Fixpoint p∗
1 The non-trivial restpoints p∗

1,2 have the Jacobian
and the determinants(−(F + (σ∗

1,2)
2) −2K

(σ∗
1,2)

2 K

)
,

∆1,2 = K
(
(σ∗

1,2)
2 − F

)
= KF

(
(σ∗

1,2)
2/F − 1

) . (4.36)

The determinants ∆1,2 can be written as

∆1,2

KF
=

(
1∓

√
1− 4γ2

2γ

)2

− 1, γ =
K√
F

∈ [0, 1/2] . (4.37)

The non-trivial fixpoints exists for 0 < γ2 < 1/4 and ∆1 is always negative,
p∗
1 is hence always a saddle.

Focus Transition for p∗
2 The focus p∗

2 changes from stable to unstable
when the trace

Kf − Ff − (σ∗
2)

2 = 0, σ∗
2 =

√
Kf − Ff =

√
kf , (4.38)

of the Jacobian (4.36) of p∗
2 changes along the line (kf , Ff ). Using the fixpoint

conditions (4.34)

K

σ∗
2

= ρ∗2 = 1− K

F
σ∗
2 , K

F + (σ∗
2)

2

F
= σ∗

2 ,
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2
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Fig. 4.5 Phase diagram for the reaction term of the Gray-Scott model (4.33). Inside the
saddle-node bifurcation line (solid red line), see Eq. (4.35) there are three fixpoints p∗

i
(i = 0, 1, 2), outside the saddle-node bifurcation line only the stable trivial restpoint p∗

0

is present. p∗
1 is a saddle and p∗

2 a stable node (checkerboard brown area), a stable focus
(light shaded green area) or an unstable focus (shaded brown area), the later two regions

being separated by the focus transition line (solid blue line), as defined by (4.39). The

black filled circle denotes pc = (1, 1)/16. and the open diamonds the parameters used for
the simulation presented in Fig. 4.7

K = k + F and (4.38), we obtain

(Ff + kf )
2 = Ff

√
kf (4.39)

for the focus transition line (kf , Ff ). One can verify that the Lyapunov expo-
nents are complex along (4.39), becoming however real for lower values of k,
as illustrated in Fig. 4.5. The endpoint of (4.39) is

pc = (1/16, 1/16) = (0.0625, 0.0625) , (4.40)

in the (k, F ) plane, which coincides with the turning point of the saddle-node
line (4.35).

Merging of an Unstable Focus and a Saddle In Fig. 4.6 we illustrate the
flow of the reaction term of the Gray-Scott model for two sets of parameters
(k, F ). The unstable focus p∗

2 and the saddle p∗
1 annihilate each other for

k → kc. One observes that the large-scale features of the flow are remarkable
stable similar for k < kc and k > kc, as all trajectories, apart from the stable
manifolds of the saddle, flow to the global attractor p∗

0 = (1, 0).

Attractor Relict Dynamics Close to the outside of the saddle-node line
(kc, Fc) the dynamics slows down when approaching a local minimum of
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Fig. 4.6 Flow of the reaction term of the Gray-Scott model (4.33) in phase space (ρ, σ),

for F = 0.01. The stable fixpoint p∗
0 = (1.0) (black filled circle) is globally attracting.

The focus transition (4.39) occurs at kf = 0.0325 and the saddle-node transition (4.35)

at kc = 0.04 Left : kf < k = 0.035 < kc, with p∗
1 and p∗

2 (red circles) being a saddle an

unstable focus respectively. Right : kc < k = 0.045. The shaded circle denotes the locus of
the attractor relict, the local minimum of q = f2, see Eq. (4.41), which evolves into the

bifurcation point for k → kc

q(x) = f2(x), ẋ = f(x) , (4.41)

with q being a measure for the velocity of the flow, which vanishes at a
fixpoint.

Attractor relict. A local, non-zero minimum of q(x), close to a bifurcation point,

and turning into a fixpoint at the bifurcation, is denoted an attractor relict or a

slow point.

Beyond the transition, for k > kc, the attractor relict, as indicated in
Fig. 4.6, still influences dramatically, on a phenomenological level, the flow.
With the attractor relict determining a region in phase space where the direc-
tion of the flow turns sharply.

Dynamical Pattern Formation The Gray-Scott system shows a wide
range of complex spatio-temporal structures close to the saddle-node line,
as illustrated in Fig. 4.7, ranging from dots growing and dividing in a cell-like
fashion to more regular stripe-like patterns.

The generation of non-trivial pattern occurs, even though not exclusively,
when only the trivial fixpoint (1, 0) with the Jacobian

A1 =

(
−F 0

0 −(F + k)

)
(4.42)

is present. There is no way to add a diffusion term A2, compare expres-
sion (4.31), such that A1 + A2 would have a positive eigenvalue. Pattern
formation in the Gray-Scott system is hence not due to a Turing instability.
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Fig. 4.7 Dynamical patterns for the Gray-Scott model (4.33). Shown is ρ(x, y, t), the
diffusion constants are Dρ/2 = Dσ = 10−5. The simulation parameters are (k, F ) =

(0.062, 0.03) (left) and (k, F ) = (0.06, 0.037) (right), as indicated in the phase diagram,

Fig. 4.5 (Illustrations courtesy P. Bastani)

4.3 Collective Phenomena and Swarm Intelligence

When a system is composed out of many similar or identical constituent parts,
such as the boolean networks discussed in Chap. ??, their mutual interaction
may give rise to interesting phenomena. Several distinct concepts have been
developed in this context, each carrying its own specific connotation.

– Collective Phenomena
Particles like electrons obey relatively simple microscopic equations of
motions, like Schrödinger’s equation, interacting pairwise. Their mutual
interactions may lead to phase transitions and to emergent macroscopic
collective properties, like superconductivity or magnetism, not explicitly
present in the underlying microscopic description.

– Emergence
At times loaded heavily by surrounding philosophical discussions, “weak
emergence” is equivalent to collective behavior in physics with “strong
emergence” denoting the emergence of higher-level properties which can-
not be traced back causally to microscopic laws. There is no way, by defi-
nition, to use accepted scientific methods to prove or disprove the presence
of strong emergence in a given model.

– Self Organization
When generic generative principles give rise to complex behavior, for a
wide range of environmental and starting conditions, one speak of self
organization in the context of complex system theory. The resulting prop-
erties may be interesting, biologically relevant or emergent.

– Swarm Intelligence
In biological settings, with the agents being individual animals, one speaks
of swarm intelligence whenever the resulting collective behavior is of high
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behavioral relevance. Behavior is generically task oriented and swarm intel-
ligence may hence be used algorithmically for solving certain computa-
tional problems.

Collective phenomena arise, generally speaking, when “the sum is more than
the parts”, just as mass psychology transcends the psychology of the con-
stituent individuals.

4.3.1 Phase Transitions in Social Systems

Phase transitions occur in many physical systems, as further discussed in
Chap. ??, being of central importance also in biology and sociology. A well
known psychological phenomenon is, in this context, the transition from nor-
mal crowd behavior to collective hysteria. As a simple example we consider
here the nervous rats problem.

Calm and Nervous Rats Consider N rats constrained to live in an area
A, with a population density ρ = N/A. There are Nc calm and Nn nervous
rats with Nc +Nn = N and with respective population densities ρc = Nc/A
and ρn = Nn/A.

Comfort zone Each rat has a zone a = πr2 around it, with r being a
characteristic radius. A calm rat will get nervous if at least one nervous rat
comes too close, entering its comfort zone a, with a nervous rat calming down
when having its comfort zone all for itself.

Master Equation The time evolution for the density of nervous rats is then
given by

ρ̇n = Pc→n ρc − Pn→c ρn , (4.43)

with the transition probabilities

Pc→n = 1−
(
1− a

A

)Nn

, Pn→c =
(
1− a

A

)N−1

, (4.44)

since 1− a/A is the probability for a rat being out of a given comfort zone.

Thermodynamic Limit For constant comfort areas a we consider now the
thermodynamic limit A→ ∞ and find

lim
A→∞

(
1− a

A

)ρnA

= e−ρna, lim
A→∞

(
1− a

A

)ρA
= e−ρa

for (4.44), where we have used (N − 1) ≈ N , Nn = ρnA and N = ρA.

Stationary Solution For the stationary solution ρ̇n = 0 of the master
equation (4.43) we then obtain
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Fig. 4.8 Solution of the nervous rats problem (4.43). Shown is the left- and the right-hand

side of the self-consistency condition (4.46), for various number of rats σ in the comfort
zone a, as function of the average number of nervous rats σn per a. The dashed line is σn

(
1− e−ρna

)
(ρ− ρn) = e−ρaρn , (4.45)

which has a trivial solution ρn = 0 for all population densities ρ and comfort
zones a. Multiplying with a we obtain

σn = eσ
(
1− e−σn

)
(σ − σn), σ = ρa, σn = ρna , (4.46)

where the dimensionless densities σ and σn correspond to the respective num-
bers of rats within a comfort area a.

Critical Rat Density The graphical representation of (4.46) is given in
Fig. 4.8. A non-trivial solution σn > 0 is possible only above a certain critical
number σc of rats per comfort zone. At σ = σc the right-hand side of (4.46)
has unitary slope, with respect to σn, for σn → 0,

1 = eσc σc, σc ≈ 0.56713 . (4.47)

A finite fraction of nervous rats is present roughly whenever a rat has less than
two comfort areas for itself, whereas all rats calm eventually down whenever
the average population density ρ is smaller than ρc = σc/a. Note, that we
could rewrite (4.47) approximatively as

σc = e−σc ≈ 1− σc, σc ≈ 1/2 .
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4.3.2 Collective Decision Making and Stigmergy

Herding animals and social insects are faced, at time, with the problem of
taking decisions collectively. When selecting a new nest for swarming honey
bees or a good foraging site for ants, no single animal will compare two
prospective target sites. Individual opinions regarding the quality of prospect
sites are instead pooled together into groups of alternative decisions with a
competitive dynamical process reducing the number of competing opinions
until a single target site remains.

Swarming Bees Bees communicate locally by dancing, both when they are
in the nest and communicate prospective foraging sites and when a new queen
leaves the old nest together with typically about 10.000 workers, searching
for a suitable location for building a new nest.

The swarm stays huddled together with a small number of typically 5% of
bees scouting in the meantime for prospective new nest sites. Scouts coming
back to the swarm waiting site will advertise new locations they found with,
with the duration of the dance being proportional to the estimated quality
of the prospective nest location.

New scouts ready to fly out observing the dancing returning scouts have
hence a higher probability to observe the advertisement of a high quality site
and to follow suit. This mechanism leads to a competitive process with lower
quality prospective nest sites receiving fewer consecutive visits by the scouts.

Opinion pooling is inherent in this process as there are many scout bees
flying out for site inspection and the whole consensus process is an extended
affair, taking up to a few days.

Foraging Ants Most social animals gain in survival efficiency by making
collective decisions for selected key tasks. An ant colony profits from exploit-
ing the richest food sources available and the corresponding decision problem
is illustrated in Fig. 4.9.

The quality of a food resource is given by its distance to the nest and its
utility for the species. When the ant returns to the nest it lays down a path
of pheromones, with the amount of pheromone released being proportional
to the quality of the food site discovered.

Ants leaving the nest in the search for food will tend to follow the
pheromone gradient and such arrive predominantly to high quality food sites.
Returning they will reenforce the existing pheromone path with an intensity
appropriate to their own assessment of the food site. With a large number of
ant going forth and back this process will lead to an accurate weighting of
foraging sites, with the best site eventually winning in the end over all other
prospective food resources.

Information Encoding and Stigmergy Bees and ants need an observ-
able scalar quantity in order to exchange information about the quality of
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Fig. 4.9 Illustration of binary decision making for foraging ants starting from the nest

(to the left) and needing to decide which of the (upper/lower) food sources may be more
profitable

prospective sites. This quantity is time for the case of bees and pheromone
intensity for the ants.

Stigmergy. When information is off-loaded to the environment for the purpose of

communication one speaks of stigmergy.

Producing pheromone traces ants manipulate the environment for the pur-
pose of information exchange.

Ant and Pheromone Dynamics For the binary decision process of
Fig. 4.9 we denote with ρ1,2 the densities of travelling ants along the two
routes, with φ1,2 and Q1,2 the respective pheromone densities and site
qualities. The process

T ρ̇1 = (ρ− ρ1)φ1 − Ψ φ̇1 = −Γφ1 +Q1ρ1

T ρ̇2 = (ρ− ρ2)φ2 − Ψ φ̇2 = −Γφ2 +Q2ρ2
(4.48)

then describes the dynamics of ρ = ρ1 + ρ2 ants foraging with T setting the
real-world time needed for the foraging and Γ being the pheromone decay
constant. The update rates ρ̇i for the individual number of ants in (4.48) are
relative to an average update rate Ψ/T .

Ant Number Conservation The updating rules ρ̇1,2 for the ant densities
are selected to be conserving with the overall number ρ = ρ1 + ρ2 of ants
remaining constant. This can be achieved by selecting the flux Ψ in (4.48)
appropriately as

2Ψ = ρ(φ1 + φ2)− ρ1φ1 − ρ2φ2

= ρ2φ1 + ρ1φ2

2T ρ̇1 = ρ2φ1 − ρ1φ2

2T ρ̇2 = ρ1φ2 − ρ2φ1
, (4.49)

by demanding ρ̇1 + ρ̇2 to vanish.

Pheromone Conservation Considering with Φ = Q2φ1+Q1φ2 a weighted
pheromone concentration we find
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Φ̇ = −ΓΦ+Q1Q2(ρ1 + ρ2), Φ → ρQ1Q2/Γ ,

when using (4.48). Any initial weighted pheromone concentration Φ will hence
relax fast to ρQ1Q2/Γ and it is hence enough to consider the time evolution
in subspace spanned by φ2 = (Φ−Q2φ1)/Q1,

2T ρ̇1 = (ρ− ρ1)φ1 − ρ1(Φ−Q2φ1)/Q1

φ̇1 = −Γφ1 +Q1ρ1
. (4.50)

Binary Decision Making There are two fixpoints of the system (4.50),
given by

ρ1 = ρ, ρ2 = 0, φ1 = Q1ρ/Γ, φ2 = 0 ,

and viceversa with 1 ↔ 2. The Jacobian of (4.50) for the fixpoint ρ1 = 0 = φ1

is (
−Φ/Q1 ρ
Q1 −Γ

)
, ∆ = ΦΓ/Q1 −Q1ρ = (Q2 −Q1)ρ ,

when setting 2T = 1 for simplicity. The trace −(Γ +Φ/Q1) of the Jacobian is
negative and the fixpoint is hence stable/unstable (a saddle), compare (4.25),
when the determinant ∆ is positive/negative, hence when Q2 > Q1 and
Q1 > Q2 respectively.

The dynamics (4.50) hence leads to binary decision process with all ants
following, in the stationary state, the path with the higher quality factor Qj .

Ant Colony Optimization Algorithm One can generalize (4.49) to a
network of connections with the quality factors Qi being proportional to the
inverse travelling times. This setup is then denoted the ant colony optimiza-
tion algorithm, it has a close connection to the travelling salesman problem.
It can be used to find shortest paths on networks.

4.3.3 Collective Behavior and Swarms

Consider a large group of moving agents, like a flock of birds in the air, a
school of fishes in the ocean or cars on a motorway, with each agent individ-
ually adapting its proper velocity according to the perceived positions and
movements of other close-by agents. For modelling purposes one can consider
the behavior of the individual agents, as we will do. Alternatively, for a large
enough number of agents one may also use a hydrodynamic description by
considering a master equation for the density of agents.

Individual Decision Making The members of the swarm take their deci-
sions individually and no group consensus mechanism is in place determining
the overall direction the swarm is flying. The resulting group behavior may
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Fig. 4.10 Examples of two typical Mexican hat potentials (4.52), as generated by super-

posing two Gaussian or two exponentials. The thin vertical lines indicate the respective
positions of maximal slope

nevertheless have high biological relevance, such as avoiding a predator col-
lectively.

Newton’s Equations for Birds The motions for i = 1, . . . , N birds with
positions xi and velocities vi can be modelled typically by

ẋi = vi v̇i = γ
[
(v0i )

2 − (vi)
2
]
vi

+
∑

j ̸=i f(xj ,xi) +
∑

j ̸=i g(xj ,xi|vj ,vi)

, (4.51)

with the first term in v̇i modelling the preference for moving with a preferred
velocity v0i . The collective behavior is generated by the pairwise interaction
terms f and g. Reacting to observations needs time and time delays are
inherently present in f and g.

Distance Regulation Animals dispose of preferred distances to their neigh-
bors (to the side, front, back, above and below) and f(xj ,xi) may be taken,
as a first approximation, as the derivative of a “Mexican hat potential” V (z),

f(xj ,xi) = f(xj − xi) = −∇V (|xj − xi|)
V (z) = A1κ(z/R1)−A2κ(z/R2)

, (4.52)

where κ(z) is a function decaying, for example, as an exponential ∼ exp(−z),
as a Gaussian ∼ exp(−z2), or as a powerlaw ∼ 1/zα. For suitable selections
of the amplitudes Ai and of the characteristic distances Ri the potential
is repelling at short distances together with stable symmetric minima, as
illustrated in Fig. 4.10

Alignment of Velocities The function g(xj ,xi|vj ,vi) in (4.51) expresses
the tendency to align one’s own velocity with the speed and the direction of
the movement of other nearby members of the flock. A suitable functional
form would be

g(xj ,xi|vj ,vi) =
(
vj − vi

)
Avκ(|xj − xi|/Rv) , (4.53)
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with the tendency to align vanishing both for identical velocities vj and vi

and for large inter-agent distances |xj − xi| ≫ Rv.

Hiking Humans Equations like (4.51) describe nicely the observed flocking
behavior of birds and schools of fishes. We may ask when a group of humans
hiking along a one-dimensional trail will break apart due to differences in the
individual preferred hiking speeds v0i ?

⇐ ⇐ ⇐

x0,v0 x1,v1 x2,v2

The distance alignment force f is normally asymmetric, we assume here
that walkers pay attention only to the person in front. The group then stays
together, for the case that f vanishes and that all other vi < v0, if everybody
walks with the speed v ≡ v0 of the leader. The restraining potential illustrated
in Fig. 4.10 has a maximal slope fmax and the maximal individual speed
difference v0 − vi is then determined through

γ
[
(v0i )

2 − (v)2
]
v = −fmax , (v0i )

2 = (v)2 − fmax/(γv) .

The group is more likely to break apart when the desire γ to walk with one’s
own preferred velocity v0i is large.

4.3.4 Opinion Dynamics

In opinion dynamics research one considers agents have real-valued opinions
xi which may change through various processes, like conviction or consensus
building.

Bounded Confidence We consider a basic process for consensus building.
Two agents (xi, xj) meeting agree on the consensus opinion x̄ij = (xi+xj)/2
when their initial opinions are not too different,

(xi, xj) →
{
(x̄ij , x̄ij ) if |xi − xj | < d

(xi, xj) if |xi − xj | > d
. (4.54)

They do not agree to a common opinion if they initially differ beyond the
confidence bound d and distinct sets of attracting opinions tend to form, as
illustrated in Fig. 4.11.

Master Equation For large populations of agents we may define with
ρ(x, t) the density of agents having opinion x, with the time evolution given
by the master equation
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Fig. 4.11 For a confidence interval d = 0.1 a simulation of 60,303 agents with 1 · 106,
4 · 106, 16 · 106 and 64 · 106 pairwise updatings of type (4.54). Opinion attractors with a
large number of supporters tend to stabilize faster than attracting states containing smaller

number of agents

τ ρ̇(x) = 2

∫ d/2

−d/2

ρ(x+ y)ρ(x− y)dy −
∫ d

−d

ρ(x)ρ(x+ y)dy , (4.55)

with τ setting the time scale of the consensus dynamics and with the time
dependency of ρ(x, t) being suppressed. The first term results from two agents
agreeing on x, the second term describes the flow of agents leaving opinion x
by agreeing with other agents within the confidence interval d.

Infinitesimal Confidence It is possible to turn (4.55) into an ordinary
differential equation by considering the limit d→ 0 via a Taylor expansion

ρ(x+ y) ≈ ρ(x) + ρ′(x)y + ρ′′(x)
y2

2
+ . . . . (4.56)

Substituting (4.56) into (4.55) one notices that the terms proportional to y0

cancel, as the overall number of agents is conserved. The terms ∼ y1 also
vanish due to symmetry and we obtain

τ ρ̇ = 2

∫ d/2

−d/2

[
ρρ′′ − (ρ′)

2
]
y2dy − ρρ′′

∫ d

−d

y2

2
dy

= 4
[
ρρ′′ − (ρ′)

2
] 1
3

d3

8
− ρρ′′

d3

3
= −d

3

6
.
[
ρρ′′ + (ρ′)

2
]

Using ∂2ρ2/∂2x = 2[ρ′ρ′ + ρρ′′] we find

∂ρ

∂t
= − d3

12τ

∂2ρ2

∂2x
, ρ̇ = −Do∆ρ

2 , (4.57)
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with ∆ denoting the dimensional Laplace operator, here in one dimension. ρ2

enters the evolution equation as two agents have to interact for the dynamics
to proceed.

One can keep Do = d3/(12τ) in (4.57) constant in the limit d → 0 by
appropriately rescaling the time constant τ , in analogy to the derivation of
the diffusion equation ṗ = D∆p discussed in Sect. ??.

Opinion Current Recasting (4.57) in terms of the continuity equation

ρ̇ + ∇ · jo = 0, jo = Do∇ρ2 , (4.58)

defines the opinion current jo. With D0 and ρ being positive this implies that
the current strictly flows uphill, an example of a “rich gets richer dynamics”
which is evident also in the simulation shown in Fig. 4.11.

4.4 Car Following Models

The flow of cars on a motorway can be modelled by car following models,
akin to the bird flocking model discussed in Sect. 4.3.3, with the velocity
dependent forces being of central importance together with an appropriate
incorporation of human reaction times.

Chain of Cars We denote with xj(t) the position of the cars j = 0, . . . on
the one-dimensional motorway, with the acceleration ẍj given by

ẍj+1(t+ T ) =
∑
j ̸=i

g(xj , xi|ẋj , ẋi) = λ
[
ẋj(t)− ẋj+1(t)

]
, (4.59)

with λ being a reaction constant and T the reaction time. A driver tends to
break when moving up to the car in the front and to accelerate when the
distance grows. In car following models, using the notation of (4.51), one
considers mostly velocity-dependent forces.

4.4.1 Linear Flow and Carrying Capacity

One of the first questions for traffic planning regards the maximal number q
of cars per hour, the carrying capacity of a road. In the optimal situation all
car advance with identical velocities u and one would like to evaluate q(u).

Carrying Capacity for the Linear Model We denote with s the dis-
tance between two cars. Integrating the linear model (4.59), and assuming
the steady-state conditions ẋj ≡ u and xj − xj+1 ≡ s, one obtains
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ẋj+1 = λ[xj − xj+1] + c0, u = λ(s− s0) , (4.60)

where we have written the constant of integration as c0 = −λs0, with s0
being the minimal allowed distance between the cars. The carrying capacity
q, the number of cars per time passing, is given by the product of the mean
velocity u and the density 1/s of cars,

q =
u

s
= λ

(
1− s0

s

)
=

u

s0 + u/λ
, s = s0 +

u

λ
, (4.61)

where we have expressed q either as a function of the inter-vehicle distance
s or as a function of the mean velocity u. Above expression would result in a
carrying capacity being maximal for empty streets with s→ ∞ and dropping
monotonically to zero when the maximal density 1/s0 of cars is reached.

Maximal Velocity The linear model (4.59) cannot be correct, as the veloc-
ity u = λ(s− s0), as given by (4.60), would diverge for empty highways with
large inter-vehicle distances s → ∞. Real-world cars have however an upper
velocity umax and the carrying capacity must hence vanish as umax/s for
large inter-vehicle spacings s.

A natural way to overcome this deficiency of the basic model (4.59) would
be to consider terms, like for the bird flocking model (4.51), expressing the
preference to drive with a certain velocity. An alternative venue, pursued nor-
mally when modelling traffic flow, is to consider non-trivial distance depen-
dencies within the velocity dependent force g(xj , xi|ẋj , ẋi).

Non-Linear Model Driving a car one reacts stronger when the car in front
is closer, an observation which can be modelled via

ẍj+1(t+ T ) = λ
ẋj(t)− ẋj+1(t)

[xj(t)− xj+1(t)]1+α
, α > 0 , (4.62)

when assuming a scale-invariant dependency of the reaction strength. Inte-
grating (4.62) one obtains, in analogy to (4.60),

ẋj+1 =
λ

−α
[xj − xj+1]

−α + d0, u =
λ

α

[
1

sα0
− 1

sα

]
, (4.63)

with s0 denoting again the minimal inter vehicle distance and d0 = λ/(αsα0 ).
For α > 0 the mean velocity u now takes a finite value

umax =
λ

αsα0
, u = umax − λ

αsα
,

1

s
= (umax − u)1/α

(α
λ

)1/α
for near to empty streets with s→ ∞. The carrying capacity q = u/s is then
given by the parabola

q(u, α = 1) = u(umax − u)/λ (4.64)
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Fig. 4.12 The number of cars per hour passing on a highway for the linear (4.61) and

for the non-linear (4.64) car following model. λ = 3 in both cases. The carrying capacity
vanishes when the road is congested and the mean velocity u → 0. Arbitrary large cruising

velocities are possible for the linear model when the street is empty

for α = 1, as illustrated in Fig. 4.12. The traffic volume is maximal for an
intermediate mean velocity u, in accordance with daily observations.

4.4.2 Self-Organized Traffic Congestions

A steady flow of cars with ẋj(t) ≡ u may be unstable due to fluctuations
propagating along the line of vehicles, a phenomena possibly inducing traffic
congestion even in the absence of external influences, such as an accident.

Moving frame of reference The linear car following model (4.59) is the
minimal model for analyzing the dynamics for intermediate to high densities
of vehicles. We are interested in the evolution of the relative deviations zj(t)
from the steady state,

ẋi(t) = u
[
1− zi(t)

]
, żj+1(t+ T ) = λ

[
zj − zj+1

]
(4.65)

and will consider with (4.65) the evolution equations in the moving frame of
reference.

Slow Perturbations We assume that the leading car changes its cruising
speeds via

z0(t) → eγt, γ = 1/τ + iω τ > 0 . (4.66)

For evaluating the exact time evolution of the following cars one would need
to integrate piecewise (4.65), as explained in Sect. ??, consecutively for the
intervals t ∈ [nT, (n+ 1)T ].
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The timescale of the perturbation (4.66) to grow is τ and the system will
follow the behavior of the lead car relatively smooth if the delay interval T
is substantially smaller, which we will assume here.

Recursion We assume that all cars follow the time evolution (4.66) with
amplitudes aj ,

zj(t) = aj e
γt, γeγTaj+1 = λ(aj − aj+1) .

Solving for aj+1 we obtain the linear recursion

aj+1 =
λ

λ+ γeTγ
aj , an =

(
λ

λ+ γeTγ

)n

a0 . (4.67)

The recursion is stable for real exponents γ = 1/τ .

Delay Induced Instabilities We consider harmonic oscillations of the lead
car velocity corresponding to imaginary exponents γ = iω in (4.66). Evalu-
ating the norm∣∣λ+ γeTγ

∣∣2 =
∣∣λ+ iωeiTω

∣∣2 =
[
λ− ω sin(Tω)

]2
+ ω2 cos2(Tω)

we obtain ∣∣∣∣ λ

λ+ γeTγ

∣∣∣∣ = ( λ2

λ2 + ω2 − 2λω sin(Tω)

)1/2

(4.68)

for the norm of the prefactor in the recursion (4.67). The recursion is then
unstable if

λ2 + ω2 − 2λω sin(Tω) < λ2, ω < 2λ sin(Tω) . (4.69)

Suitable large time delays, with Tω ≈ π/2, induce an instability for any
values of λ and ω, in accordance with our discussion in Sect. ?? regarding the
influence of time delays in ordinary differential equations.

Self-Organized Traffic Jams An instability occurs also in the limit of
infinitesimal small frequencies ω → 0, when

1/(2λ) < T, sin(Tω) ≈ Tω . (4.70)

Strong (λ large) and slow (T large) reactions of drivers are hence more likely
to induce self-organized traffic jams.

Propagating Perturbations We consider a slowly growing perturbation
with real γ = 1/τ inducing deviations zn(t) from the steady state, with

zn(t) = a0 C
n et/τ = a0 e

n log(C) et/τ , C =
λτ

λτ + eT/τ
.
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We are interested in the propagation speed v of the perturbation, along the
line of cars, as defined by

zn(t) = a0 e
(n−vt) log(C), v =

−1

τ log(C)
. (4.71)

The speed is positive, v > 0, since 0 < C < 1 and log(C) < 0. Large reaction
times T limit the propagation speed, since

log(C) → −T/τ, v → 1/T

in the limit T ≫ τ .

Exercises

Instability of Euler’s method
Euler’s method is in general not suitable for numerically integrating par-
tial differential equations. Discretizing in space and time the diffusion
equation (4.1) reads

ρ(x, t+∆t)− ρ(x, t)

∆t
= D

ρ(x+∆x, t) + ρ(x−∆x, t)− 2ρ(x, t)

(∆x)2

in one dimension. Prove that the resulting explicit time evolu-
tion map becomes unstable for D∆t/(∆x)2 > 1/2 by considering
ρ(x, 0) = cos(πx/∆x) as a particular initial state.

Exact propagating wavefront solution
Find the reaction-diffusion system (4.2) for which the Fermi function

ρ∗(x, t) =
1

1 + eβ(x−ct)

is an exact particular solution for a solitary propagating wavefront. Deter-
mine the reaction term R(ρ) by evaluating the derivatives of ρ∗, consider
appropriate special values for β and the propagation velocity c.

Linearized Fisher equation
Consider the modified reaction-diffusion system

ρ̇ = ρ(1− ρ) + ρ′′ +
2

1− ρ

(
ρ′)2 (4.72)

and show that it is equivalent to the linearized Fisher equation (4.18)
using the transformation ρ = 1− 1/u.

Turing instability with two stable nodes
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Is it possible that the matrix A1 entering the Turing instability and
defined in (4.26), with positive ϵa, ϵb > 0, describes a stable node with
both λ± < 0? If yes, show that the superposition of two stable nodes may
generate an unstable direction.

Eigenvalues of 2× 2 matrices
Use the standard expression (4.25) for the eigenvalues of a 2× 2 matrix
and show that local maxima of the potential V (x) of a one-dimensional
mechanical system

ẋ = y, ẏ = −λ(x)y − V ′(x)

with a space-dependent damping factor λ(x) are always saddles.
Large densities of nervous rats

Evaluate, using the stationarity condition (4.46), the number of nervous
rats σn per comfort zone for large values of σ. When do all rats become
nervous?

Agents in the bounded confidence model
Show that the total number of agents

∫
ρ(x)dx is conserved for the

bounded confidence model (4.55) for opinion dynamics.

Further Reading

You are encouraged to take a look at Murray (1993) and Ellner et al. (2011)
for classical and modern in-depth treatises on mathematical modelling in
biology and ecology, at Cross et al. (2009) for the generic mathematics of
pattern formation in reaction-diffusion systems and to Petrovskii et al. (2010)
for a discussion of exactly models in this field. Fascinating pictures for the
Gray-Scott reaction diffusion system can be found additionally in Pearson
(1993).

We further suggest Bonabeau et al. (1990) for a classics on swarm intelli-
gence, Kerner (2004) for traffic modelling and Castellano (2002) for a review
on opinion dynamics and flocking behaviors.
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