
Chapter 3

Dissipation, Noise and Adaptive
Systems

Dynamical systems are generically not isolated but interact with the embed-
ding environment and one speaks of noise whenever the impact of the dynam-
ics of the environment cannot be predicted. The dynamical flow slows down
when energy is dissipated to the environment, approaching attracting states
which may be regular, such as fixpoints or limit cycle, or irregular, such as
chaotic attractors. Adaptive systems alternate between phases when they dis-
sipate energy and times when energy is taken up form the environment, with
the steady state being characterized by a balance between these two opposing
processes.

In this chapter an introduction to adaptive, dissipative and stochastic
systems will be given together with important examples from the real of
noise controlled dynamics, like diffusion, random walks and stochastic escape
and resonance.

3.1 Dissipation and Adaption

In Chap. ?? we discussed deterministic dynamical systems, viz systems for
which the time evolution can be computed exactly, at least in principle, once
the initial conditions are known. We now turn to “stochastic systems”, i.e.
dynamical systems that are influenced by noise and fluctuations. When only
the mean impact of the noise is taken into account one speaks of “dissipation”.
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2 3 Dissipation, Noise and Adaptive Systems

3.1.1 Dissipative Systems and Phase Space
Contraction

Friction and Dissipation Friction plays an important role in real-world
systems. One speaks also of “dissipation” since energy is dissipated away by
friction in physical systems.

The total energy, however, is conserved in nature and friction then just
stands for a transfer process of energy; when energy is transferred from a
system we observe, like a car on a motorway with the engine turned off, to
a system not under observation, such as the surrounding air. In this case the
combined kinetic energy of the car and the thermal energy of the air body is
constant; the air heats up a little bit while the car slows down.

The Mathematical Pendulum As an example we consider the damped
mathematical pendulum

ϕ̈ + γ ϕ̇ + ω2
0 sinϕ = 0 , (3.1)

which describes a pendulum with a rigid bar, capable of turning over com-
pletely, with ϕ corresponding to the angle between the bar and the vertical.
The mathematical pendulum reduces to the damped harmonic oscillator for
small ϕ ≈ sinϕ, which is damped/critical/overdamped for γ < 2ω0, γ = 2ω0

and γ > 2ω0.
In the absence of damping, γ = 0, the energy

E =
ϕ̇2

2
− ω2

0 cosϕ (3.2)

is conserved:

d

dt
E = ϕ̇ ϕ̈+ ω2

0ϕ̇ sinϕ = ϕ̇
(
ϕ̈+ ω2

0 sinϕ
)
= −γϕ̇2 ,

with the help of (3.1).

Normal Coordinates Transforming the damped mathematical pendulum
Eq. (3.1) to a set of coupled first-order differential equations via x = ϕ and
ϕ̇ = y one gets

ẋ = y
ẏ = −γy − ω2

0 sinx .
(3.3)

The phase space is x ∈ R2, with x = (x, y). For all γ > 0 the motion
approaches one of the equivalent global fixpoints (2πn, 0) for t → ∞ and
n ∈ Z.

Phase Space Contraction Near an attractor the phase space contracts.
We consider a three-dimensional phase space (x, y, z) for illustrational pur-
poses. The quantity
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Fig. 3.1 Simulation of the mathematical pendulum ϕ̈ = − sin(ϕ)−γϕ̇. The shaded regions

illustrate the evolution of the phase space volume for consecutive times, starting with t = 0
(top). Left : Dissipationless case γ = 0. The energy, see Eq. (3.2), is conserved as well as

the phase space volume (Liouville’s theorem). The solid/dashed lines are the trajectories

for E = 1 and E = −0.5, respectively. Right : Case γ = 0.4. Note the contraction of the
phase space volume

∆V (t) = ∆x(t)∆y(t)∆z(t) = (x(t)− x′(t)) (y(t)− y′(t)) (z(t)− z′(t))

corresponds to a small volume of phase space. Its time evolution is given by

d

dt
∆V = ∆ẋ∆y∆z +∆x∆ẏ∆z +∆x∆y∆ż ,

or
∆V̇

∆x∆y∆z
=

∆ẋ

∆x
+

∆ẏ

∆y
+

∆ż

∆z
= ∇⃗ · ẋ , (3.4)

where the right-hand side corresponds to the trace of the Jacobian. In Fig. 3.1
the time evolution of a phase space volume is illustrated for the case of the
mathematical pendulum. An initially simply connected volume of the phase
space thus remains under the effect of time evolution, but may undergo sub-
stantial
deformations.

Dissipative and Conserving Systems. A dynamical system is dissipative, if its

phase space volume contracts continuously, ∇⃗ · ẋ < 0, for all x(t). The system
is said to be conserving if the phase space volume is a constant of motion, viz if

∇ · ẋ ≡ 0.

Mechanical systems, i.e. systems described by Hamiltonian mechanics,
are all conserving in the above sense. One denotes this result from classi-
cal mechanics as “Liouville’s theorem”.

Mechanical systems in general have bounded and non-bounded orbits,
depending on the energy. The planets run through bounded orbits around
the sun, to give an example, but some comets leave the solar system for ever
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on unbounded trajectories. One can easily deduce from Liouville’s theorem,
i.e. from phase space conservation, that bounded orbits are ergodic. They
come arbitrarily close to every point in phase space having the identical con-
served energy.

Examples Dissipative systems are a special class of dynamical systems. Let
us consider a few examples:

– For the damped mathematical pendulum Eq. (3.3) we find

∂ẋ

∂x
= 0,

∂ẏ

∂y
=

∂[−γy − ω2
0 sinx]

∂y
= −γ ∇⃗ · ẋ = −γ < 0 .

The damped harmonic oscillator is consequently dissipative. It has a single
fixpoint (0, 0) and the basin of attraction is the full phase space (modulo
2π). Some examples of trajectories and phase space evolution are illus-
trated in Fig. 3.1.

– For the non-linear rotator defined by Eq. (??) we have

∂ṙ

∂r
+

∂φ̇

∂φ
= Γ − 3r2 =


< 0 for Γ < 0

< 0 for Γ > 0 and r > rc/
√
3

> 0 for Γ > 0 and 0 < r < rc/
√
3

, (3.5)

where rc =
√
Γ is the radius of the limit cycle when Γ > 0. The sys-

tem might either dissipate or take up energy, which is typical behavior of
“adaptive systems” as we will discuss further in Sect. 3.1.3. Note that the
phase space contracts both close to the fixpoint, for Γ < 0, and close to
the limit cycle, for Γ > 0.

Phase Space Contraction and Coordinate Systems The time devel-
opment of a small phase space volume, Eq. (3.4), depends on the coordinate
system chosen to represent the variables. As an example we reconsider the
non-linear rotator defined by Eq. (??) in terms of the Cartesian coordinates
x = r cosφ and y = r sinφ.

The respective infinitesimal phase space volumes are related via the Jaco-
bian,

dxdy = r dr dφ ,

and we find

∆̇V

∆V
=

ṙ∆r∆φ+ r∆̇r∆φ+ r∆r∆̇φ

r∆r∆φ
=

ṙ

r
+

∂ṙ

∂r
+

∂φ̇

∂φ
= 2Γ − 4r2 ,

compare Eqs. (??) and (3.5). The amount and even the sign of the phase
space contraction can depend on the choice of the coordinate system.

Divergence of the Flow and Lyapunov Exponents For a dynamical
system ẋ = f(x) the local change in phase space volume is given by the
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divergence of the flow

∆V̇

∆V
= ∇ · f =

∑
i

∂fi
∂xi

=
∑
i

λi (3.6)

and hence by the trace of the Jacobian Jij = ∂fi/∂xj , which we discussed in
Sect. 3.1.2. The trace of a matrix corresponds to the sum

∑
i λi of its eigen-

values λi. Phase space hence contracts when the sum of the local Lyapunov
exponents is negative.

3.1.2 Strange Attractors and Dissipative Chaos

The Lorenz Model A rather natural question regards the possible exis-
tence of attractors with less regular behaviors, i.e. which are different from
stable fixpoints, periodic or quasi-periodic motion. For this question we exam-
ine the Lorenz model

ẋ = −σ(x− y),

ẏ = −xz + rx − y, (3.7)

ż = xy − bz .

The classical values are σ = 10 and b = 8/3, with r being the control variable.

Fixpoints of the Lorenz Model A trivial fixpoint is (0, 0, 0). The non-
trivial fixpoints are

0 = −σ(x− y), x = y,
0 = −xz + rx − y, z = r − 1,
0 = xy − bz , x2 = y2 = b (r − 1) .

It is easy to see by linear analysis that the fixpoint (0, 0, 0) is stable for r < 1.
For r > 1 it becomes unstable and two new fixpoints appear:

C+,− =
(
±
√
b(r − 1),±

√
b(r − 1), r − 1

)
. (3.8)

These are stable for r < rc = 24.74 (σ = 10 and b = 8/3). For r > rc the
behavior becomes more complicated and generally non-periodic.

Strange Attractors One can show, that the Lorenz model has a positive
Lyapunov exponent for r > rc. It is chaotic with sensitive dependence on the
initial conditions. A typical orbit is illustrated in Fig. 3.2. The Lorenz model
is at the same time dissipative, since
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Fig. 3.2 A typical trajectory of the Lorenz system (3.7) for the classical set of parameters,
σ = 10, b = 8/3 and r = 28. The chaotic orbit loops around the remnants of the two

fixpoints (3.8), which are unstable for the selected set of parameters (color coded using

ChaosPro)

∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
= −(σ + 1 + b) < 0, σ > 0, b > 0 . (3.9)

The attractor of the Lorenz system therefore cannot be a smooth surface.
Close to the attractor the phase space contracts. At the same time two nearby
orbits are repelled due to the positive Lyapunov exponents. One finds a self-
similar structure for the Lorenz attractor with a fractal dimension 2.06± 0.01.
Such a structure is called a strange attractor.

Dissipative Chaos and Strange Attractors Strange attractors can only
occur in dynamical system of dimension three and higher, in one dimension
fixpoints are the only possible attracting states and for limit cycles one needs
at least two dimensions.

The Lorenz model has an important historical relevance in the develop-
ment of chaos theory and is now considered a paradigmatic example of a
chaotic system, since chaos in dissipative and deterministic dynamical sys-
tems is closely related to the emergence of strange attractors. Chaos may arise
in one dimensional maps, as we have discussed in Sect. ??, but continuous-
time dynamical systems need to be at least three dimensional in order to
show chaotic behavior.

Fractals Strange attractors often show a high degree of self-similarity, being
fractal. Fractals can be defined on an abstract level by recurrent geometric
rules, prominent examples are the Cantor set, the Sierpinski triangle and
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Fig. 3.3 The Sierpinski carpet and its iterative construction

the Sierpinski carpet illustrated in Fig. 3.3. Strange attractors are normally,
strictly speaking, multi fractal i.e. fractals with a non-uniform self similarity.

The Hausdorff Dimension An important notion in the theory of fractals
is the “Hausdorff dimension”. We consider a geometric structure defined by
a set of points in d dimensions and the number N(l) of d-dimensional spheres
of diameter l needed to cover this set. If N(l) scales like

N(l) ∝ l−DH , for l → 0 , (3.10)

then DH is called the Hausdorff dimension of the set. Alternatively we can
rewrite Eq. (3.10) as

N(l)

N(l′)
=

(
l

l′

)−DH

, DH = − log[N(l)/N(l′)]

log[l/l′]
, (3.11)

which is useful for self-similar structures (fractals).
The d-dimensional spheres necessary to cover a given geometrical structure

will generally overlap. The overlap does not affect the value of the fractal
dimension as long as the degree of overlap does not change qualitatively with
decreasing diameter l.

The Hausdorff Dimension of the Sierpinski Carpet For the Sierpinski
carpet we increase the number of points N(l) by a factor of 8, compare
Fig. 3.4, when we decrease the length scale l by a factor of 3 (see Fig. 3.3):

DH → − log[8/1]

log[1/3]
=

log 8

log 3
≈ 1.8928 .

3.1.3 Adaptive Systems

A general complex system is neither fully conserving nor fully dissipative.
Adaptive systems will have phases where they take up energy and periods
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Fig. 3.4 The fundamental unit of the Sierpinski carpet, compare Fig. 3.3, contains eight

squares which can be covered by discs of an appropriate diameter

where they give energy back to the environment. An example is the non-linear
rotator of Eq. (??), see also Eq. (3.5).

In general one affiliates with the term “adaptive system” the notion of
complexity and adaption. Strictly speaking any dynamical system is adaptive
if ∇ · ẋ may take both positive and negative values. In practice, however, it
is usual to reserve the term adaptive system to dynamical systems showing
a certain complexity, such as emerging behavior.

The Van der Pol Oscillator Circuits or mechanisms built for the purpose
of controlling an engine or machine are intrinsically adaptive. An example is
the van der Pol oscillator,

ẍ − ϵ(1− x2)ẋ + x = 0,
ẋ = y
ẏ = ϵ(1− x2)y − x

(3.12)

where ϵ > 0 and where we have used the phase space variables x = (x, y).

We evaluate the time evolution ∇⃗ · ẋ of the phase-space volume,

∇⃗ · ẋ = +ϵ (1− x2) .

The oscillator takes up/dissipates energy for x2 < 1 and x2 > 1, respec-
tively. A simple mechanical example for a system with similar properties is
illustrated in Fig. 3.5

Secular Perturbation Theory We consider a perturbation expansion in
ϵ. The solution of Eq. (3.12) is

x0(t) = a ei(ω0t+ϕ) + c.c., ω0 = 1 , (3.13)

for ϵ = 0. We note that the amplitude a and phase ϕ are arbitrary in
Eq. (3.13). The perturbation ϵ(1 − x2)ẋ might change, in principle, also the
given frequency ω0 = 1 by an amount ∝ ϵ. In order to account for this
“secular perturbation” we make the ansatz
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Fig. 3.5 The seesaw with a water container at one end; an example of an oscillator that

takes up and disperses energy periodically

x(t) =
[
A(T )eit +A∗(T )e−it

]
+ ϵx1 + · · · , A(T ) = A(ϵt) , (3.14)

which differs from the usual expansion x(t) → x0(t) + ϵx′(t) + · · · of the full
solution x(t) of a dynamical system with respect to a small parameter ϵ.

Expansion From Eq. (3.14) we find to the order O(ϵ1)

x2 ≈ A2e2it + 2|A|2 + (A∗)2e−2it + 2ϵx1

[
Aeit +Ae−it

]
ϵ(1− x2) ≈ ϵ(1− 2|A|2)− ϵ

[
A2e2it + (A∗)2e−2it

]
,

ẋ ≈
[
(ϵAT + iA) eit + c.c.

]
+ ϵ ẋ1, AT =

∂A(T )

∂T

ϵ(1− x2)ẋ = ϵ(1− 2|A|2)
[
iAeit − iA∗e−it

]
− ϵ

[
A2e2it + (A∗)2e−2it

] [
iAeit − iA∗e−it

]
and

ẍ =
[(
ϵ2ATT + 2iϵAT −A

)
eit + c.c.

]
+ ϵ ẍ1

≈
[
(2iϵAT −A) eit + c.c.

]
+ ϵẍ1 .

Substituting these expressions into Eq. (3.12) we obtain in the order O(ϵ1)

ẍ1 + x1 =
(
−2iAT + iA− i|A|2A

)
eit − iA3e3it + c.c. . (3.15)

The Solvability Condition Equation (3.15) is identical to a driven har-
monic oscillator, which will be discussed in Chap. ?? in more detail. The time
dependencies

∼ eit and ∼ e3it

of the two terms on the right-hand side of Eq. (3.15) are proportional to the
unperturbed frequency ω0 = 1 and to 3ω0, respectively.

The term ∼ eit is therefore exactly at resonance and would induce a diverg-
ing response x1 → ∞, in contradiction to the perturbative assumption made
by ansatz (3.14). Its prefactor must therefore vanish:
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Fig. 3.6 Two solutions of the van der Pol oscillator, Eq. (3.12), for small ϵ and two different

initial conditions. Note the self-generated amplitude stabilization

AT =
∂A

∂T
=

1

2

(
1− |A|2

)
A,

∂A

∂t
=

ϵ

2

(
1− |A|2

)
A , (3.16)

where we have used T = ϵt. The solubility condition Eq. (3.16) can be written
as

ȧ eiϕ + iϕ̇ a eiϕ =
ϵ

2

(
1− a2

)
a eiϕ

in phase-magnitude representation A(t) = a(t)eiϕ(t), or

ȧ = ϵ
(
1− a2

)
a/2,

ϕ̇ ∼ O(ϵ2) .
(3.17)

The system takes up energy for a < 1 and the amplitude a increases until the
saturation limit a → 1, the conserving point. For a > 1 the system dissipates
energy to the environment and the amplitude a decreases, approaching unity
for t → ∞, just as we discussed in connection with Eq. (??).

The solution x(t) ≈ 2 a cos(t), compare Eqs. (3.14) and (3.17), of the van
der Pol equations therefore constitutes an amplitude-regulated oscillation, as
illustrated in Fig. 3.6. This behavior was the technical reason for historical
development of the control systems that are described by the van der Pol
equation (3.12).

Liénard Variables For large ϵ it is convenient to define, compare Eq. (3.12),
with

ϵ
d

dt
Y (t) = ẍ(t) − ϵ

(
1− x2(t)

)
ẋ(t) = −x(t) (3.18)

or
ϵẎ = Ẍ − ϵ

(
1−X2

)
Ẋ, X(t) = x(t),

the Liénard variables X(t) and Y (t). Integration of Ẏ with respect to t yields

ϵY = Ẋ − ϵ

(
X − X3

3

)
,

where we have set the integration constant to zero. We obtain, together with
Eq. (3.18),
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Fig. 3.7 The Van der Pol oscillator for a large driving c ≡ ϵ. Left : The relaxation oscilla-

tions with respect to the Liénard variables Eq. (3.19). The arrows indicate the flow (Ẋ, Ẏ ),
for c = 3, see Eq. (3.19). Also shown is the Ẋ = 0 isocline Y = −X + X3/3 (solid line)

and the limit cycle, which includes the dashed line with an arrow and part of the isocline.

Right : The limit cycle in terms of the original variables (x, y) = (x, ẋ) = (x, v). Note that
X(t) = x(t)

Ẋ = c
(
Y − f(X)

)
Ẏ = −X/c

f(X) = X3/3−X , (3.19)

where we have set c ≡ ϵ, as we are now interested in the case c ≫ 1.

Relaxation Oscillations We discuss the solution of the van der Pol oscil-
lator Eq. (3.19) for a large driving c graphically, compare Fig. 3.7, by consid-
ering the flow (Ẋ, Ẏ ) in phase space (X,Y ). For c ≫ 1 there is a separation
of time scales,

(Ẋ, Ẏ ) ∼ (c, 1/c), Ẋ ≫ Ẏ ,

which leads to the following dynamical behavior:

– Starting at a general (X(t0), Y (t0)) the orbit develops very fast ∼ c and
nearly horizontally until it hits the “isocline”1

Ẋ = 0, Y = f(X) = −X +X3/3 . (3.20)

– Once the orbit is close to the Ẋ = 0 isocline Y = −X +X3/3 the motion
slows down and it develops slowly, with a velocity ∼ 1/c close-to (but not
exactly on) the isocline (Eq. (3.20)).

– Once the slow motion reaches one of the two local extrema X = ±a0 = ±1
of the isocline, it cannot follow the isocline any more and makes a rapid
transition towards the other branch of the Ẋ = 0 isocline, with Y ≈ const.
Note, that trajectories may cross the isocline vertically, e.g. right at the
extrema Ẏ |X=±1 = ∓1/c is small but finite.

The orbit therefore relaxes rapidly towards a limiting oscillatory trajectory,
illustrated in Fig. 3.7, with the time needed to perform a whole oscillation
depending on the relaxation constant c; therefore the term “relaxation oscilla-

1 The term isocline stands for “equal slope” in ancient Greek.
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tion”. Relaxation oscillators represent an important class of cyclic attractors,
allowing to model systems going through several distinct and well charac-
terized phases during the course of one cycle. We will discuss relaxation
oscillators further in Chap. ??.

3.1.4 Conserving Adaptive Systems

A conserving dynamical system per definition conserves the volume of phase
space enclosed by a set of trajectories, as discussed in Sect. 3.1.1. The phase
space volume expands and contracts, on the other hand, alternatingly for
adaptive systems. This is the case, e.g., for the Van der Pol oscillator, as
defined by Eq. (3.12), and for the Taken-Bogdanov system, which we investi-
gated in Sect. ??.

An adaptive system can hence not conserve phase-space volume, but it
may dispose of conserved quantities, constants of motions.

Energy Conservation in Mechanical Systems Newton’s equation

ẋ = v
v̇ = −∇V (x)

E(x,v) =
v2

2
+ V (x) (3.21)

for a mechanical systems with a potential V (x) conserves the energy E,

dE

dt
=

∂E

∂x
ẋ+

∂E

∂v
v̇ =

(
∇V + v̇

)
v = 0 .

The energy is an instance of a constant of motion, a conserved quantity.

Lotka-Volterra Model for Rabbits and Foxes Evolution equations for
one or more interacting species are termed Lotka-Volterra models. A basic
example is that of a prey (rabbit) with population density x being hunted by
a predator (fox) with population density y,

ẋ = Ax − Bxy

ẏ = −Cy + Dxy
. (3.22)

The population x of rabbits can grow by themselves but the foxes need to
eat rabbits in order to multiply. All constants A,B,C and D are positive.

Fixpoints The Lotka-Volterra equation (3.22) has two fixpoints,

x∗
0 = (0, 0), x∗

1 = (C/D,A/B) . (3.23)

with the respective Jacobians, compare Sect. ??,

J0 =

(
A 0
0 −C

)
, J1 =

(
0 −BC/D

AD/B 0

)
.
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Fig. 3.8 The phase space flow of the fox and rabbit Lotka-Volterra model (3.22) For
x > y / x < y the flow, expands/contracts (blue/green orbits) according to (3.24). The

trajectories coincide with the iso-energy lines of the conserved function E on phase space,

Eq. (3.25). The fixpoints are the saddle (0, 0) and the neutral focus (1, 1) (open red circle).
The Lyapunov exponents are real in the shaded region and complex otherwise, with the

separatrix given by expression (3.27)

The trivial fixpoint x∗
0 is hence a saddle and x∗

1 a neutral focus with purely
imaginary Lyapunov exponents λ = ±i

√
CA. The trajectories circling the

focus close onto themselves, as illustrated in Fig. 3.8 for A = B = C = D = 1.

Phase space Evolution We now consider the evolution of phase space
volume, as defined by Eq. (3.4),

∂ẋ

∂x
+

∂v̇

∂v
= A− By − C +Dx . (3.24)

The phase space expands/contracts for y smaller/larger than (A+Dx−C)/B,
the tell sign of an adaptive system.

Constant of Motion The function

E(x, y) = A log(y) + C log(x)− By −Dx (3.25)

on phase space (x, y) is a constant of motion for the Lotka-Volterra
model (3.22), since

dE

dt
= Aẏ/y + Cẋ/x − Bẏ − Dẋ

= A(−C +Dx ) + C(A− By)−B(−C +Dx )y −D(A− By)x

= (A− By)(−C +Dx ) + (A− By)(C −Dx ) = 0 .
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The prey-predator system (3.22) does hence dispose of a non-trivial constant
of motion. Note that E(x, y) has no biological significance which would be
evident per se.

Iso-Energy Manifolds The flow of a d−dimensional dynamical system ẋ =
f(x) disposing of a conserved functional E(x), we call it here a generalized
energy, is always restricted to an iso-energy manifold defined by E(x) =
const,

dE

dt
= ∇E · ẋ = 0 . ∇E ⊥ ẋ (3.26)

The flow ẋ is hence perpendicular to the gradient ∇E of the conserved gen-
eralized energy and hence confined to an iso-energy manifold. The phase
space of the fox and rabbit Lotka-Volterra model is two-dimensional and
the iso-energy lines are hence one-dimensional, coinciding therefore with the
trajectories, as illustrated in Fig. 3.8

Lyapunov Exponent We consider A = B = C = D = 1 and the Jacobian(
(1− y) −x

y (x− 1)

)
, λ± =

x− y

2
± 1

2

√
(x− y)2 − 4(x+ y − 1)

for a generic point (x, y) in phase space. The Lyapunov exponents λ± are
real close to the axes and complex further away, with the separatrix given by

(x− y)2 = 4(x+ y − 1), y = x+ 2±
√
8x . (3.27)

There is no discernible change in the flow dynamics across the separa-
trix (3.27), which we have included in Fig. 3.8, viz when the Lyapunov expo-
nents acquire finite imaginary components.

Invariant Manifolds Fixpoints and limit cycles are examples of invariant
subsets of phase space.

Invariant Manifold. A subset M of phase space invariant under the flow for all

times t ∈ [−∞,∞] is denoted an invariant manifold.

All trajectories of the fox and rabbit Lotka-Volterra model, apart from
the stable and the unstable manifolds of the saddle (0, 0), are closed and
constitute hence invariant manifolds.

Fixpoints and limit cycles are invariant manifolds with dimensions zero
and one respectively, strange attractors, see Sect. 3.1.1, have generically a
fractal dimension.

Invariant Manifolds and Averaged Lyapunov Exponents The evolu-
tion of phase space on an invariant manifold (viz inside the manifold) with
dimension m is determined by m Lyapunov exponents whenever the manifold
has a smooth topology (which is not the case for fractals).

Overall the phase space cannot expand or contract for bounded invariant
manifolds M and one has hence m Lyapunov exponents for which the real
part vanishes when averaged of over the M .
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This is the case for all trajectories of the fox and rabbit Lotka-Volterra
model and manifestly evident for the case A = B = C = D = 0 discussed
above, for which the real part of the Lyapunov exponent λ± is anti-symmetric
under the exchange x ↔ y.

Lotka-Volterra system with resource limitation The reproduction of
the prey in the original Lotka-Volterra model (3.22) is not limited. In prac-
tice, the population density x of the rabbits will be bounded by the carrying
capacity xmax of the supporting environment, such that x < xmax. The mod-
ified model,

ẋ = Ax

(
1− x

xmax

)
−Bxy, ẏ = (Dx− C)y .

has the non-trival fixpoint

x∗ =
C

D
, y∗ =

A

B

(
1− C

Dxmax

)
, (3.28)

which exists for C < Dxmax. The population of rabits is never large enough
to support the a finite population of foxes in the opposite case, when C >
Dxmax, which leads to x → xmax and y → 0. When existing, the steady state
defined by (3.28) is stable.

3.2 Diffusion and Transport

Deterministic vs. Stochastic Time Evolution So far we have discussed
some concepts and examples of deterministic dynamical systems, governed
by sets of coupled differential equations without noise or randomness. At the
other extreme are diffusion processes for which the random process dominates
the dynamics.

Dissemination of information through social networks is one of many exam-
ples where diffusion processes plays a paramount role. The simplest model
of diffusion is the Brownian motion, which is the erratic movement of grains
suspended in liquid observed by the botanist Robert Brown as early as 1827.
Brownian motion became the prototypical example of a stochastic process
after the seminal works of Einstein and Langevin at the beginning of the
twentieth century.
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3.2.1 Random Walks, Diffusion and Lévy Flights

One-Dimensional Diffusion We consider the random walk of a particle
along a line, with the equal probability 1/2 to move left/right at every time
step. The probability

pt(x), x = 0,±1,±2, . . . , t = 0, 1, 2, . . .

to find the particle at time t at position x obeys the master equation

pt+1(x) =
pt(x− 1) + pt(x+ 1)

2
. (3.29)

In order to obtain the limit of continuous time and space, we consider explic-
itly the steps ∆x and ∆t in space and time, and rewrite the master equa-
tion (3.29) as

pt+∆t(x)− pt(x)

∆t
=

(∆x)2

2∆t

pt(x+∆x) + pt(x−∆x)− 2pt(x)

(∆x)2
, (3.30)

where we have subtracted on both sides the current distribution pt(x). Now,
taking the limit ∆x,∆t → 0 in such a way that (∆x)2/(2∆t) remains finite,
we obtain the diffusion equation

∂p(x, t)

∂t
= D

∂2p(x, t)

∂x2
, D =

(∆x)2

2∆t
, (3.31)

with D being denoted the diffusion constant.

Solution of the Diffusion Equation The solution of the diffusion equa-
tion (3.31) is given by

Φ(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
,

∫ ∞

−∞
dxΦ(x, t) = 1 , (3.32)

for a localized initial state2 Φ(x, t = 0) = δ(x), as can been seen using

Φ̇ =
−Φ

2t
+

x2Φ

4Dt2
, Φ′ =

−xΦ

2Dt
, Φ′′ =

−Φ

2Dt
+

x2Φ

4D2t2
.

and the diffusion equation (3.31).

Diffusive Transport Equation (3.32) corresponds, as a function of the
coordinate x, to a Gaussian, see Sect. ??, with variance σ2 = 2Dt. One hence
concludes that the variance of the displacement follows diffusive behavior,
i.e.

⟨x2(t)⟩ = 2D t , x̄ =
√
⟨x2(t)⟩ =

√
2D t . (3.33)

2 Note:
∫
e−x2/adx =

√
aπ and lima→0 exp(−x2/a)/

√
aπ = δ(x).
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Fig. 3.9 Examples of random walkers with scale-free distributions ∼ |∆x|1+β for the

real-space jumps, see Eq. (3.35). Left : β = 3, which falls into the universality class of
standard Brownian motion. Right : β = 0.5, a typical Levy flight. Note the occurrence of

longer-ranged jumps in conjunction with local walking

Fig. 3.10 A random walker with distributed waiting times ∆ti and jumps ∆xi may
become a generalized Lévy flight, compare Eq. 3.35

Diffusive transport is characterized by transport sublinear in time in contrast
to ballistic transport with x = vt , as illustrated in Fig. 3.9.

Green’s Function for Diffusion For general initial distributions p0(x) =
p(x, 0) of walkers the diffusion equation (3.31) is solved by

p(x, t) =

∫
dy Φ(x− y, t) p0(y) , (3.34)

since limt→0 Φ(x−y, t) = δ(x−y). An integral kernel which allows to construct
the solution of a differential equation for arbitrary initial conditions is denoted
a Green’s function.

Lévy Flights We can generalize the concept of a random walker, which is at
the basis of ordinary diffusion, and consider a random walk with distributions
p(∆t) and p(∆x) for waiting times ∆ti and jumps ∆xi, at every step i =
1, 2, . . . of the walk, as illustrated in Fig. 3.10. One may assume scale-free
distributions

p(∆t) ∼ 1

(∆t)1+α
, p(∆x) ∼ 1

(∆x)1+β
, α, β > 0 . (3.35)
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If α > 1 (finite mean waiting time) and β > 2 (finite variance), nothing special
happens. In this case the central limiting theorem for well behaved distribu-
tion functions is valid for the spatial component and one obtains standard
Brownian diffusion. Relaxing the above conditions one finds four regimes:
normal Brownian diffusion, “Lévy flights”, fractional Brownian motion, also
denoted “subdiffusion” and generalized Lévy flights termed “ambivalent pro-
cesses”. Their respective scaling laws are listed in Table 3.1 and two examples
are shown in Fig. 3.9.

Lévy flights occur in a wide range of processes, such as in the flight pat-
terns of wandering albatrosses or in human travel habits, which seem to be
characterized by a generalized Lévy flight with α, β ≈ 0.6.

3.2.2 Markov Chains

For many common stochastic processes x1 → x2 → x3 → . . . the probability
to visit a state xt+1 = y depends solely on the current state xt = x.

Markov Property. A stochastic process is markovian if it has no memory.

A memory would be present, on the other hand, if the transition rule xt →
xt+1 would be functionally dependent on earlier xt−1, xt−2, . . . elements of
the process.

Absorbing States The transition probabilities p(x, y) to visit a state
xt+1 = y, when being at xt = x, are normalized,

1 =
∑
y

p(x, y), p(x, y) ≥ 0 , (3.36)

since one always arrives to some state xt+1 = y when starting from a given
xt = x. Note, that p(x, x) > 0 is possible and a state x∗ is called absorbing
whenever

p(x∗, x∗) = 1, p(x∗, y) = 0, ∀y ̸= x∗ . (3.37)

Table 3.1 The four regimes of a generalized walker with distribution functions, Eq. (3.35),

characterized by scalings∝ (∆t)−1−α and∝ (∆x)−1−β for the waiting times∆t and jumps
∆x, as depicted in Fig. 3.10

α > 1 β > 2 x̄ ∼
√
t Ordinary diffusion

α > 1 0 < β < 2 x̄ ∼ t1/β Lévy flights

0 < α < 1 β > 2 x̄ ∼ tα/2 Subdiffusion

0 < α < 1 0 < β < 2 x̄ ∼ tα/β Ambivalent processes
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The stochastic process can be viewed as being terminated or extinct when
reaching an absorbing state. The extinction probability is then the probabil-
ity to hit x∗ when starting from a given state x0. A famous example is the
Galton-Watson process discussed in Chap. ??, which describes the extinction
probabilities of family names.

Master Equation We consider now density distributions ρt(x) of walkers
with identical transition probabilities p(x, y) and discrete times t = 0, 1, . . . .
The evolution equation for the density of walkers,

ρt+1(y) = ρt(y) +
∑

x

[
ρt(x)p(x, y)− ρt(y)p(y, x)

]
= ρt(y) +

∑
x ρt(x)p(x, y)− ρt(y)

=
∑

x ρt(x)p(x, y)

(3.38)

describes the conservation of the number of walkers, where we have
used (3.36), and is denoted master equation. Random walks, compare
Eq. (3.29), and any other stochastic time series, e.g. as discussed in Chap. ??,
are described by master equations.

Stationarity A Markov process becomes stationary when the distribution
of walkers does not change anymore with time, viz when

ρ∗(y) = ρt+1(y) = ρt(y),
∑
x

ρ∗(x)p(x, y) = ρ∗(y), ρ∗P = ρ∗ ,

where we have defined with P the matrix p(x, y). The stationary distribution
of walkers ρ∗ is then a left eigenvector of P .

General Two-State Markov Process As an example we define with,
compare Fig. 3.11,

P =

(
α 1− α

1− β β

)
, α, β ∈ [0, 1] (3.39)

the transition matrix P for the general two-state Markov process. The eigen-
values λ of the left eigenvectors ρ∗ = (ρ(1), ρ(2)) of P are determined by

αρ(1) + (1− β)ρ(2) = λρ(1)

(1− α)ρ(1) + β ρ(2) = λρ(2)
, (3.40)

which has the solutions

λ1 = 1, ρ∗λ1
=

1

N1

(
1− β
1− α

)
, N1 =

√
(1− α)2 + (1− β)2

and

λ2 = α+ β − 1, ρ∗λ2
=

1√
2

(
1
−1

)
.
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Fig. 3.11 The general two-state Markov chain, as defined by Eq. (3.39)

The first eigenvalue dominates generically, λ1 = 1 > |α+ β − 1| = |λ2|, with
the contribution to ρ∗λ2

dying out. All walkers will end up in an absorbing
state whenever one is present. E.g. for α = 1 the stationary distribution
ρ∗1 = (1, 0).

Random Surfer Model A famous diffusion process is the “random surfer
model” which tries to capture the behavior of Internet users. This model is
at the basis of the original Page & Brin Google page-rank algorithm.

Consider a network of i = 1, . . . , N Internet hosts connected by directed
hyperlinks characterized by the adjacency matrix Aij , as defined in Chap. ??.
We denote with

ρi(t),

N∑
i=1

ρi(t) = 1

the probability of finding, at any given time t, an Internet surfer visiting the
host i. The surfers are assumed to perform a markovian walk on the Internet
by clicking randomly any available out-going hyperlink, giving raise to the
master equation

ρi(t+ 1) =
c

N
+ (1− c)

∑
j

Aij∑
l Alj

ρj(t) . (3.41)

Normalization is conserved,∑
i

ρi(t+ 1) = c+ (1− c)
∑
j

∑
i Aij∑
l Alj

ρj(t) = c+ (1− c)
∑
j

ρj(t) .

Hence
∑

i ρi(t+ 1) = 1 whenever
∑

j ρj(t) = 1.

The Google page rank The parameter c in the random surfer model reg-
ulates the probability to randomly enter the Internet:

– For c = 1 the adjacency matrix and hence the hyperlinks are irrelevant. We
can interpret therefore c as the uniform probability to enter the Internet.

– For c = 0 a surfer never enters the Internet randomly, he continues to click
around forever. 1− c is hence the probability to stop clicking hyperlinks.

The random surfer model (3.41) can be solved iteratively. Convergence is fast
for not too small c. At every iteration authority is transferred from one host j
to other hosts i through its outgoing hyperlinks Aij . The steady-state density
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ρi of surfers can hence be considered as a measure of host authority and is
equivalent to the Google page rank.

Relation to Graph Laplacian The continuous time version of the random
surfer model can be derived, for the case c = 0, from

ρi(t+∆t)− ρi(t)

∆t
=

∑
j

Aij

kj
ρj(t) − ρi(t), kj =

∑
l

Alj ,

where kj is the out-degree of host j and ∆t = 1 initially. Taking now the
limit ∆t → 0 we obtain

d

dt
ρ = Λ̃ ρ, Λ̃ij = −Λij

kj
, Λij = kjδij −Aij , (3.42)

where Λij is the Graph Laplacian discussed in Chap. ??. Equation (3.42)
corresponds to the generalization of the diffusion equation (3.31) to networks.

3.2.3 The Langevin Equation and Diffusion

Diffusion as a Stochastic Process Langevin proposed to describe the
diffusion of a particle by the stochastic differential equation

mv̇ = −mγ v + ξ(t), ⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = Qδ(t− t′), (3.43)

where v(t) is the velocity of the particle and m > 0 its mass.

(i) The term −mγv on the right-hand-side of Eq. (3.43) corresponds to a
damping term, the friction being proportional to γ > 0.

(ii) ξ(t) is a stochastic variable, viz noise. The brackets ⟨. . .⟩ denote ensemble
averages, i.e. averages over different noise realizations.

(iii) As white noise (in contrast to colored noise) one denotes noise with a flat
power spectrum (as white light), viz ⟨ξ(t)ξ(t′)⟩ ∝ δ(t− t′).

(iv) The constant Q is a measure for the strength of the noise.

Solution of the Langevin Equation Considering a specific noise realiza-
tion ξ(t), one finds

v(t) = v0 e
−γt +

e−γt

m

∫ t

0

dt′ eγt
′
ξ(t′) (3.44)

for the solution of the Langevin equation (3.43), where v0 ≡ v(0).

Mean Velocity For the ensemble average ⟨v(t)⟩ of the velocity one finds
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⟨v(t)⟩ = v0 e
−γt +

e−γt

m

∫ t

0

dt′ eγt
′
⟨ξ(t′)⟩︸ ︷︷ ︸

0

= v0 e
−γt . (3.45)

The average velocity decays exponentially to zero.

Mean Square Velocity For the ensemble average ⟨v2(t)⟩ of the velocity
squared one finds

⟨v2(t)⟩ = v20 e
−2γt +

2 v0 e
−2γt

m

∫ t

0

dt′ eγt
′
⟨ξ(t′)⟩︸ ︷︷ ︸

0

+
e−2γt

m2

∫ t

0

dt′
∫ t

0

dt′′ eγt
′
eγt

′′
⟨ξ(t′)ξ(t′′)⟩︸ ︷︷ ︸
Qδ(t′−t′′)

= v20 e
−2γt +

Qe−2γt

m2

∫ t

0

dt′ e2γt
′

︸ ︷︷ ︸
(e2γt−1)/(2γ)

and finally

⟨v2(t)⟩ = v20 e
−2γt +

Q

2 γ m2

(
1− e−2γt

)
. (3.46)

For long times the average squared velocity

lim
t→∞

⟨v2(t)⟩ = Q

2 γ m2
(3.47)

becomes, as expected, independent of the initial velocity v0. Equation (3.47)
shows explicitly that the dynamics is driven exclusively by the stochastic
process ∝ Q for long time scales.

The Langevin Equation and Diffusion The Langevin equation is for-
mulated in terms of the particle velocity. In order to make connection with
the time evolution of a real-space random walker, Eq. (3.33), we multiply the
Langevin equation (3.43) by x and take the ensemble average:

⟨x v̇⟩ = −γ⟨x v⟩ +
1

m
⟨x ξ⟩ . (3.48)

We note that

x v = x ẋ =
d

dt

x2

2
, x v̇ = x ẍ =

d2

dt2
x2

2
− ẋ2

and

⟨xξ⟩ =

〈
ξ(t)

∫ t

0

v(t′)dt′
〉

=

∫ t

0

dt′
∫ t′

0

dt′′
e−γ(t′−t′′)

m
⟨ξ(t)ξ(t′′)⟩︸ ︷︷ ︸
Qδ(t−t′′)

= 0 ,



3.3 Noise-Controlled Dynamics 23

where we have used (3.44) in the limit of large times and that t′′ < t. We
then find for Eq. (3.48)

d2

dt2
⟨x2⟩
2

− ⟨v2⟩ = −γ
d

dt

⟨x2⟩
2

or
d2

dt2
⟨x2⟩ + γ

d

dt
⟨x2⟩ = 2⟨v2⟩ =

Q

γm2
, (3.49)

with the help of the long-time result Eq. (3.47) for ⟨v2⟩. The solution of
Eq. (3.49) is

⟨x2⟩ =
[
γt− 1 + e−γt

] Q

γ3m2
. (3.50)

For long times we find

lim
t→∞

⟨x2⟩ ≃ Q

γ2m2
t ≡ 2Dt , D =

Q

2γ2m2
(3.51)

diffusive behavior, compare Eq. (3.33). This shows that diffusion is micro-
scopically due to a stochastic process, since D ∝ Q.

3.3 Noise-Controlled Dynamics

Stochastic Systems A set of first-order differential equations with a
stochastic term is generally denoted a “stochastic system”. The Langevin
equation (3.43) discussed in Sect. 3.2.3 is a prominent example. The stochastic
term corresponds quite generally to noise. Depending on the circumstances,
noise might be very important for the long-term dynamical behavior. Some
examples of this are as follows:

– Neural Networks: Networks of interacting neurons are responsible for the
cognitive information processing in the brain. They must remain functional
also in the presence of noise and need to be stable as stochastic systems. In
this case the introduction of a noise term to the evolution equation should
not change the dynamics qualitatively. This postulate should be valid for
the vast majorities of biological networks.

– Diffusion: The Langevin equation reduces, in the absence of noise, to a
damped motion without an external driving force, with v = 0 acting as a
global attractor. The stochastic term is therefore essential in the long-time
limit, leading to diffusive behavior.

– Stochastic Escape and Stochastic Resonance: A particle trapped in a local
minimum may escape this minimum by a noise-induced diffusion process;
a phenomenon called “stochastic escape”. Stochastic escape in a driven
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bistable system leads to an even more subtle consequence of noise-induced
dynamics, the “stochastic resonance”.

3.3.1 Stochastic Escape

Drift Velocity We generalize the Langevin equation (3.43) and consider an
external potential V (x),

mv̇ = −mγ v + F (x) + ξ(t), F (x) = −V ′(x) = − d

dx
V (x) ,

(3.52)

where v,m are the velocity and the mass of the particle, ⟨ξ(t)⟩ = 0 and
⟨ξ(t)ξ(t′)⟩ = Qδ(t−t′). In the absence of damping (γ = 0) and noise (Q = 0),
Eq. (3.52) reduces to Newton’s law.

We consider for a moment a constant force F (x) = F and the absence of
noise, ξ(t) ≡ 0. The system then reaches an equilibrium for t → ∞ when
relaxation and force cancel each other:

mv̇D = −mγ vD + F ≡ 0, vD =
F

γm
. (3.53)

vD is called the “drift velocity”. A typical example is the motion of electrons
in a metallic wire. An applied voltage, which leads an electric field along the
wire, induces an electrical current (Ohm’s law). This results in the drifting
electrons being continuously accelerated by the electrical field, while bump-
ing into lattice imperfections or colliding with the lattice vibrations, i.e. the
phonons.

The Fokker–Planck Equation We consider now an ensemble of particles
diffusing in an external potential, and denote with P (x, t) the density of
particles at location x and time t. Particle number conservation defines the
particle current density J(x, t) via the continuity equation

∂P (x, t)

∂t
+

∂J(x, t)

∂x
= 0. (3.54)

There are two contributions, JD and Jξ, to the total particle current den-
sity, J = JD + Jξ, induced by the diffusion and by the stochastic motion
respectively. We derive these two contributions in two steps.

In a first step we consider with Q = 0 the absence of noise in Eq. (3.52).
The particles then move uniformly with the drift velocity vD in the stationary
limit, and the current density is

JD = vD P (x, t) .
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In a second step we set the force to zero, F = 0, and derive the contribution
Jξ of the noise term ∼ ξ(t) to the particle current density. For this purpose
we rewrite the diffusion equation (3.31)

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
≡ −∂Jξ(x, t)

∂x

∂P (x, t)

∂t
+

∂Jξ(x, t)

∂x
= 0

as a continuity equation, which allows us to determine the functional form of
Jξ,

Jξ = −D
∂P (x, t)

∂x
. (3.55)

Using the relation D = Q/(2γ2m2), see Eq. (3.51), and including the drift
term we find

J(x, t) = vD P (x, t) − D
∂P (x, t)

∂x
=

F

γm
P (x, t) − Q

2γ2m2

∂P (x, t)

∂x
(3.56)

for the total current density J = JD + Jξ. Using expression (3.56) for the
total particle current density in (3.54) one obtains the “Fokker–Planck” or
“Smoluchowski” equation

∂P (x, t)

∂t
= −∂vD P (x, t)

∂x
+

∂2DP (x, t)

∂x2
(3.57)

for the density distribution P (x, t), where the first term on the right-hand side
of (3.57) corresponds to ballistic transport and the second term to diffusion.

The Harmonic Potential We consider the harmonic confining potential

V (x) =
f

2
x2, F (x) = −f x ,

and a stationary density distribution,

dP (x, t)

dt
= 0 =⇒ dJ(x, t)

dx
= 0 .

Expression (3.56) yields then the differential equation

d

dx

[
f x

γ m
+

Q

2γ2m2

d

dx

]
P (x) = 0 =

d

dx

[
βfx+

d

dx

]
P (x),

with β = 2γm/Q and where for the stationary distribution function P (x) =
limt→∞ P (x, t). The system is confined and the steady-state current vanishes
consequently. We find

P (x) = Ae−β f
2 x

2

= Ae−βV (x) A =

√
fγm

πQ
, (3.58)
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V(x)

P(x)
∆V

J

xmax xmin

Fig. 3.12 Left : Stationary distribution P (x) of diffusing particles in a harmonic potential

V (x). Right : Stochastic escape from a local minimum, with ∆V = V (xmax) − V (xmin)
being the potential barrier height and J the escape current

where the prefactor is determined by the normalization condition
∫
dxP (x) =

1. The density of diffusing particles in a harmonic trap is Gaussian-
distributed, see Fig. 3.12.

The Escape Current We now consider particles in a local minimum, as
depicted in Fig. 3.12, with a typical potential having a functional form like

V (x) ∼ −x + x3 . (3.59)

Without noise, the particle will oscillate around the local minimum eventually
coming to a standstill x → xmin under the influence of friction.

With noise, the particle will have a small but finite probability

∝ e−β∆V , ∆V = V (xmax)− V (xmin)

to reach the next saddlepoint, where ∆V is the potential difference between
the saddlepoint and the local minimum, see Fig. 3.12. The solution Eq. (3.58)
for the stationary particle distribution in a confining potential V (x) has a
vanishing total current J . For non-confining potentials, like Eq. (3.59), the
particle current J(x, t) never vanishes. Stochastic escape occurs when starting
with a density of diffusing particles close the local minimum, as illustrated
in Fig. 3.12. The escape current will be nearly constant whenever the escape
probability is small. In this case the escape current will be proportional to
the probability a particle has to reach the saddlepoint,

J(x, t)
∣∣∣
x=xmax

∝ e−β [V (xmax)−V (xmin)] ,

when approximating the functional dependence of P (x) with that valid for
the harmonic potential, Eq. (3.58).

Kramer’s Escape When the escape current is finite, there is a finite prob-
ability per unit of time for the particle to escape the local minima, the
Kramer’s escape rate rK ,
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rK =
ωmaxωmin

2π γ
exp [−β (V (xmax)− V (xmin))] , (3.60)

where the prefactors ωmin =
√

|V ′′(xmin)|/m and ωmax =
√
|V ′′(xmax)|/m

can be derived from a more detailed calculation, and where β = 2γm/Q.

Stochastic Escape in Evolution Stochastic escape occurs in many real-
world systems. Noise allows the system to escape from a local minimum where
it would otherwise remain stuck for eternity.

As an example, we mention stochastic escape from a local fitness maximum
(in evolution fitness is to be maximized) by random mutations that play the
role of noise. These issues will be discussed in more detail in Chap. ??.

3.3.2 Stochastic Resonance

The Driven Double-Well Potential We consider diffusive dynamics in a
driven double-well potential, see Fig. 3.13,

ẋ = −V ′(x) +A0 cos(Ωt) + ξ(t), V (x) = −1

2
x2 +

1

4
x4 . (3.61)

The following is to be remarked:

– Equation (3.61) corresponds to the Langevin equation (3.52) in the limit
of very large damping, γ ≫ m, keeping γm ≡ 1 constant (in dimensionless
units).

– The potential in Eq. (3.61) is in normal form, which one can always achieve
by rescaling the variables appropriately.

– The potential V (x) has two minima x0 at

−V ′(x) = 0 = x− x3 = x(1− x2), x0 = ±1 .

The local maximum x0 = 0 is unstable.
– We assume that the periodic driving ∝ A0 is small enough, such that the

effective potential V (x) − A0 cos(Ωt)x retains two minima at all times,
compare Fig. 3.13.

Transient State Dynamics The system will stay close to one of the two
minima, x ≈ ±1, for most of the time when both A0 and the noise strength are
weak, see Fig. 3.14. This is an instance of “transient state dynamics”, which
will be discussed in more detail in Chap. ??. The system switches between a
set of preferred states.

Switching Times An important question is then: How often does the sys-
tem switch between the two preferred states x ≈ 1 and x ≈ −1? There are
two time scales present:



28 3 Dissipation, Noise and Adaptive Systems

V(x, t)

Fig. 3.13 The driven double-well potential, V (x)−A0 cos(Ωt)x, compare Eq. (3.61). The

driving force is small enough to retain the two local minima

– In the absence of external driving, A0 ≡ 0, the transitions are noise driven
and irregular, with the average switching time given by Kramer’s life-
time TK = 1/rK , see Fig. 3.14. The system is translational invariant with
respect to time and the ensemble averaged expectation value

⟨x(t)⟩ = 0

therefore vanishes in the absence of an external force.
– When A0 ̸= 0 the external force induces a reference time and a non-zero

response x̄,
⟨x(t)⟩ = x̄ cos(Ωt− ϕ̄) , (3.62)

which follows the time evolution of the driving potential with a certain
phase shift ϕ̄, see Fig. 3.15.

The Resonance Condition When the time scale 2TK = 2/rK to switch
back and forth due to the stochastic process equals the period 2π/Ω, we
expect a large response x̄, see Fig. 3.15. The time-scale matching condition

2π

Ω
≈ 2

rK

depends on the noise-level Q, via Eq. (3.60), for the Kramer’s escape rate
rK . The response x̄ first increases with rising Q and then becomes smaller
again, for otherwise constant parameters, see Fig. 3.15. Therefore the name
“stochastic resonance”.

Stochastic Resonance and the Ice Ages The average temperature Te of
the earth differs by about ∆Te ≈ 10 ◦C in between a typical ice age and the
interglacial periods. Both states of the climate are locally stable.

– The Ice Age: The large ice covering increases the albedo of the earth and
a larger part of sunlight is reflected back to space. The earth remains cool.

– The Interglacial Period: The ice covering is small and a larger portion of
the sunlight is absorbed by the oceans and land. The earth remains warm.

A parameter of the orbit of the planet earth, the eccentricity, varies slightly
with a period T = 2π/Ω ≈ 105 years. The intensity of the incoming radi-
ation from the sun therefore varies with the same period. Long-term cli-
mate changes can therefore be modeled by a driven two-state system, i.e. by
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Fig. 3.14 Example trajectories x(t) for the driven double-well potential. The strength
and the period of the driving potential are A0 = 0.3 and 2π/Ω = 100, respectively. The

noise level Q is 0.05, 0.3 and 0.8 (top/middle/bottom), see Eq. (3.61)

Eq. (3.61). The driving force, viz the variation of the energy flux the earth
receives from the sun, is however very small. The increase in the amount of
incident sunlight is too weak to pull the earth out of an ice age into an inter-
glacial period or vice versa. Random climatic fluctuation, like variations in
the strength of the gulf stream, are needed to finish the job. The alternation
of ice ages with interglacial periods may therefore be modeled as a stochastic
resonance phenomenon.

Neural Networks and Stochastic Resonance Neurons are driven
bistable devices operating in a noisy environment. It is therefore not sur-
prising that stochastic resonance may play a role for certain neural network
setups with undercritical driving.

Beyond Stochastic Resonance Resonance phenomena generally occur
when two frequencies, or two time scales, match as a function of some control
parameter. For the case of stochastic resonance these two time scales corre-
spond to the period of the external driving and to the average waiting time
for the Kramer’s escape respectively, with the later depending directly on
the level of the noise. The phenomenon is denoted as “stochastic resonance”
since one of the time scales involved is controlled by the noise.

One generalization of this concept is the one of “coherence resonance”. In
this case one has a dynamical system with two internal time scales t1 and
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Fig. 3.15 The gain x̄, see Eq. (3.62), as a function of noise level Q. The strength of the

driving amplitude A0 is 0.1, 0.2 and 0.3 (bottom/middle/top curves), see Eq. (3.61) and
the period 2π/Ω = 100. The response x̄ is very small for vanishing noise Q = 0, when the

system performs only small-amplitude oscillations in one of the local minima

t2. These two time scales will generally be affected to a different degree by
an additional source of noise. The stochastic term may therefore change the
ratio t1/t2, leading to internal resonance phenomena.

Exercises

The logistic map and the shift map
With the representation xn = (1 − cos(πθn))/2 show that the logistic
map (??) is equivalent, for r = 4, to the shift map

θn+1 = (2θn)%1 =

{
2θn for 0 < θ < 0.5

2θn − 1 for 0.5 < θ < 1
(3.63)

where the %-sign denotes the modulus operation. This representation can
be used to evaluate analytically the distribution p(x) of finding x when
iterating the logistic map ad infinitum.

Fixpoints of the Lorenz Model
Perform the stability analysis of the fixpoint (0, 0, 0) and of C+,− =

(±
√
b(r − 1),±

√
b(r − 1), r − 1) for the Lorenz model Eq. (3.7) with r,

b > 0. Discuss the difference between the dissipative case and the ergodic
case σ = −1− b, see Eq. (3.9).

The Hausdorff Dimension
Calculate the Hausdorff dimension of a straight line and of the Cantor set,
which is generated by removing consecutively the middle-1/3 segment of
a line having a given initial length.
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The Driven Harmonic Oscillator
Solve the driven, damped harmonic oscillator

ẍ + γ ẋ + ω2
0 x = ϵ cos(ωt)

in the long-time limit. Discuss the behavior close to the resonance ω →
ω0.

Markov Chain of Umbrellas
Lady Ann has four umbrellas which she uses whenever it rains to go
from work to home, or vice versa. She takes only an umbrella with her
whenever it rains, leaving the umbrellas otherwise in the office and at
home respectively. It rains with probability p ∈ [0, 1]. How often does
Lady Ann get wet?

Biased Random Walk
Generalize the derivation of the diffusion equation (3.31) for a random
walker jumping with probabilities (1± α)/2 either to the right or to the
left, with α ∈ [−1 : 1]. How does α needs to scale such that a non-trivial
contribution is retained in the limit ∆t → 0 and ∆x → 0? What kind of
solutions does one find for a vanishing diffusion constant D → 0?

Continuous-Time Logistic Equation
Consider the continuous-time logistic equation

ẏ(t) = αy(t)
[
1− y(t)

]
.

(A) Find the general solution and (B) compare to the logistic map
Eq. (??) for discrete times t = 0, ∆t, 2∆t, ...

Further Reading

For further studies we refer to introductory texts for dynamical system theory
Katok (1995), classical dynamical systems Goldstein (2002), chaos Schuster
(2005); Devaney (1989); Gutzwiller (1990); Strogatz (1994), stochastic sys-
tems Ross (1982); Lasota (1994) and differential equations with time delays
Erneux (2009). Other textbooks on complex and/or adaptive systems are
those by Schuster (2001) and Boccara (2003). For an alternative approach to
complex system theory via Brownian agents consult Schweitzer (2003).

The interested reader may want to study some selected subjects in more
depth, such as the KAM theorem Ott (2002), relaxation oscillators Wang
(1999), stochastic resonance Benzit et al. (1981); Gammaitoni et al. (1998),
coherence resonance Pikovsky (1997), Lévy flights Metzler (2000), the con-
nection of Lévy flights to the patterns of wandering albatrosses Viswanathan
et al. (1996), human traveling Brockmann et al. (2006) and diffusion of infor-
mation in networks Eriksen et al. (2003).
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The original literature provides more insight, such as the seminal works
of Einstein (1905) and Langevin (1908) on Brownian motion or the first
formulation and study of the Lorenz (1963) model.
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