Advanced introduction to C++ and scientific computing WiSe 16/17
submit latest Fri, 11.11.2016, 13:00 via email to your tutor C. Gros

Exercise Sheet #4

Bulcsti Sandor <sandor@th.physik.uni-frankfurt.de>
Hendrik Wernecke <wernecke@th.physik.uni-frankfurt.de>
Laura Martin <lmartin@th.physik.uni-frankfurt.de>

Christopher Czaban <czaban@th.physik.uni-frankfurt.de>

Problem 1 (Pointers) 6 Pts

(a) Define three pointers of the type int, double, long double that each
point to an array of the corresponding type. Print the addresses of the
arrays (i.e. the values of the pointers) and the value that the pointer
represents. Then increment the pointers (e.g. by ++p or p=p+1) and
print both the value of the pointer and the element it points. What do
you find for the different data types?

(b) Write a function int myfunc(int &x, int &y) that takes two integers
by reference and returns their product. Rewrite the function such that
it takes two pointers as arguments instead.

(c) Write a function double scalarProduct(double *arrl, double *arr2)
that returns the scalar product of two vectors stored in arril, arr2.

(d) Now implement the vector product of two vectors. Therefore you should
create the function void outerProduct(double *arrl, double *arr2,
double *result), where the two vectors are stored in arri, arr2 and
the result is to be stored in result. This structure is the typical way to
return arrays from functions.

Problem 2 (Multi-dimensional arrays) 6 Pts

In C++ one can use multi-dimensional arrays like int arr [m] [n] that corre-
spond to m x n matrices. Create an array and write a function for each of
the following tasks:

(i) filling the array with arbitrary values
(ii) multiply each element by a constant
(iii) printing out the values formatted.

The functions shall of course take a multi-dimensional array as an argument.
Be aware of how to handle the dimensions (macros, global variables, con-
stants).

Advanced introduction to C++ and scientific computing WiSe 16/17
submit latest Fri, 11.11.2016, 13:00 via email to your tutor C. Gros

Additionally write a function void printArray(int arr[], int len) that
takes a one-dimensional array and its length. Then call the function giving
one row of the previously defined matrix as an argument.

Problem 3 (Battleship game) 8 Pts

The well-known battleship game is played by two players, each of them having
two 10 x 10 square grids, which play the role of a battlefield and a tracking
map. On one grid the player arranges ships and records the shots by the
opponent. On the other, tracking grid the player records their own shots,
trying to find all the battleships of the opponent. The rows and columns
of the grids are labelled by capital letters and numbers, respectively. As
a starting setup, both players place the ships of different sizes at random
positions on their primary grid. The set of given ships is:

Class of ship | Size
1x Carrier 5
1x Battleship
1x Cruiser
2x Destroyer
2x Submarine

=D O i~

Write a C++ code to implement the one-player (asymmetric) version of the
game, i.e. a player against the computer, but the computer is not shooting
back. The player shall see a tracking grid for the game, while the battlefield
of the computer is not shown. The game proceeds in series of rounds. In each
round the player launches a rocket targeting a certain position (a grid cell)
of the battlefield, the tracking grid is then updated and refreshed, indicating
whether the the shot was successful or not.

As a starting point you can use the code presented in the lecture following
the instructions below:

e write a method to randomly place the ships on the battlefield at dif-
ferent positions and orientations (ships shall not overlap, and must be
fully on the field)

e implement a function for checking whether the player’s shot hit a ship
of the computer

e mark the position of the hit on the tracking grid, placing on o/x cor-
responding to successful /unsuccessful trials

e update the screen after every round

http://itp.uni-frankfurt.de/~gros/Vorlesungen/CPP/2016_C++_Data_Types.html#(10)

	(Pointers)6Pts
	(Multi-dimensional arrays)6Pts
	(Battleship game)8Pts

