
Advanced introduction to C++ and scientific computing
hand in: Fri, 04. 11. 2016, 12:00

WiSe 16/17
C. Gros

Exercise Sheet #3
Bulcsú Sándor <sandor@th.physik.uni-frankfurt.de>

Hendrik Wernecke <wernecke@th.physik.uni-frankfurt.de>

Laura Martin <lmartin@th.physik.uni-frankfurt.de>

Christopher Czaban <czaban@th.physik.uni-frankfurt.de>

Reminder: How to submit your solutions

(a) programms must be fully commented and compilable

(b) file names must contain your name and the problem number

(c) subject of submission email must contain CPP and problem sheet

Problem 1 (Some file processing in Linux) 6 Pts

(a) Renaming a large number of files (3 Pts)
Sooner or later you might find yourself in a situation where you have to
handle or manipulate large amounts of files. A possible scenario could
be the renaming of many files. Doing this file by file would result in a
big waste of your valuable working time. Fortunately the Linux shell is
a very strong ally for (not only) such kind of tasks.
Your task: Write a script that contains a loop (e.g. for or while) which
produces 10 files with the following name pattern:

data_file_0000.dat

...

data_file_0010.dat

Having done this write another loop which preserves a part of the file
name but removes the file part, i.e.

data_0000.dat

...

data_0010.dat

Hint: One possible way to replace a substring of a string stored inside a
variable is:

MY_VAR="nice_weather"

MY_VAR=${MY_VAR/nice/bad}

echo $MY_VAR

1

Advanced introduction to C++ and scientific computing
hand in: Fri, 04. 11. 2016, 12:00

WiSe 16/17
C. Gros

(b) File processing with awk (3 Pts)
Awk is an own language shipped with most UNIX systems and is ex-
tremely useful to produce reports from or filter large amounts of raw
data of any kind. Routines in awk are simpler and quicker to compose
and much shorter than it is the case for other conventional languages. In
certain aspects it is very similar to the C-language and it understands the
same arithmetic operators, hence it can be considered to be a pseudo-C
interpreter. The following exercise has the purpose to cover some very
basic functionalities of awk.
Your task: Create a file with the following lines of numbers:

//file matrix.dat

1 0.5 0.25 0.125 0.0625

10 1 5 3.8

100 1.5 1

1000 2 4.9 1 10.9

10000 2.5 999 23 1

Write an awk script that . . .

� computes the mean value for every row,

� the mean value of the first column,

� prints out rows with a mean value ≥ 1 and ≤ 50,

� computes the trace (imagine the data to be a quadratic matrix with
some missing entries).

It is up to you if you combine all of these functionalities in a single script
or rather write a single script for every functionality.

A brief introduction and some hints:

Awk processes files line by line and a script has the following general struc-
ture, consisting of three parts:

BEGIN { } #Action taking place before the

#first line of the file

{ } #Action taking place for each line

END { } #Action after the last line

Every part by itself is optional which means you could remove it entirely if
not needed. In order to grasp this concept write a script with the following
awk program, execute it on some arbitrary file and see what happens:

awk ’BEGIN {print "START" }

{print }

END {print "STOP" }’ filename

2

Advanced introduction to C++ and scientific computing
hand in: Fri, 04. 11. 2016, 12:00

WiSe 16/17
C. Gros

You can even use awk without processing a file. Some examples are:

awk ’BEGIN {print "Playing with numbers: ";

print "10/5*3+3 = " 10/5*3+3;} ’

awk ’BEGIN {for(i=1;i <=10;i++){print "i = "i}}’

awk ’BEGIN {my_variable ="10"; print my_variable /2;}’

As you can see code has to be enclosed by curly brackets. Unquoted strings
are interpreted as variables. Accordingly when you intend to print a string
literally you have to put it in quotes. Awk’s main purpose is processing files
and operating on its lines and fields. Awk’s standard field separator is white
space, i.e. if you have a file like the one above every number is treated as a
single field. For instance if you want to print the first and the second field or
column, respectively, of every line you would simply use the following awk
code:

awk ’{print $1 " " $2}’ filename

You can also format your output with the printf function which works
exactly as its equivalent from the C-language. Information about the line
number and the number of fields per each line can be accessed through the
variables NR (number of records) and NF (number of fields), as with the
following program:

awk ’{print "Line nr. " NR " has " NF " columns ";

}’ filename

Further control flow operations are pretty equivalent to the C-language as
well, for instance if-cases:

awk ’{if($1 >10) print $1;

}’ filename

To give you a rather complete example of an awk script consider the follow-
ing file, listing the employees of a smaller company including their position,
monthly incomes and working hours per day.

//file person_income_working_hours.dat

Newman manager 10000 16

Johnson senior -consultant 8000 14

Loyd consultant 6500 14

Walker consultant 6000 14

Jackson consultant 6200 14

Bering intern 1200 20

The following awk script computes the average income of a consultant work-
ing for this company. Furthermore it calculates the average and total working
hours of all employees.

awk ’BEGIN{

3

Advanced introduction to C++ and scientific computing
hand in: Fri, 04. 11. 2016, 12:00

WiSe 16/17
C. Gros

nr_consultants =0;

average_income_consultant =0;

working_hours =0

}

{

if($2==" consultant ")

{

nr_consultants ++;

average_income_consultant +=$3

print $2

}

working_hours +=$4;

}

END{

average_income_consultant /= nr_consultants;

print "average_income_consultant ="

average_income_consultant;

print "total working hours: " working_hours;

print "average working hours: " working_hours/

NR;

}’ person_income_working_hours.dat

By now you should have sufficient information to accomplish the exercise. If
not feel free to search the internet for further information, e.g.:

http://www.grymoire.com/Unix/Awk.html

Problem 2 (Code snippets) 8 Pts

Embed the following code snippets into a running program, complete the
code where neccessary. Mind that the snippets might also contain bugs (i. e.
mistakes). (In general it can be beneficial to use additional compiler flags
like -Wfatal-errors -Wconversion -Wall -pedantic. This can protect
you from using bad programming practices with which your program might
still compile but could provoke subtle errors at some point that can not
be caught by the compiler. Use the man pages (man g++) to look up their
meanings and test them.)

(a) (2 Pts)

int myArray [5] = {1, 3, 5, 7, 9};

for (i=0 ; i<=6 ; ++i) {

cout << "myArray[" << i << "] = " << myArray[i] << endl;

}

(b) (2 Pts)

4

Advanced introduction to C++ and scientific computing
hand in: Fri, 04. 11. 2016, 12:00

WiSe 16/17
C. Gros

double f, x

x = 1;

f = sin(x);

printf("sin(%.4f) = %.4f", x, f);

(c) (2 Pts)

void divWithRem(int a, int b) {

int h = a/b; / auxiliar variable

cout << a < " / " << b << " = " << h;

cout << ", remainder: " << a%b << endl;

}

divWithRem (7, 2.);

(d) (2 Pts)

double myfunc(double a, double b) { return a*a+b*b; }

int result = myfunc(5, 2);

Problem 3 (Caesar cipher) 6 Pts

The Caesar cipher is a so-called single-alphabet substitution cipher and one
of the most simple encryption algorithms. In order to encrypt a certain letter
by this cypher you choose a key k ∈ {0, 25} and shift the letter by k letters
in the alphabet. E. g. if you choose k = 4 then E is encrypted by A.

A C D EB F HG I K LJ

A C D EB F HGW X ZY

Implement a program which asks for a sentence, if you want to encrypt
or decrypt and which key you want to use. With the function getline() the
program is able to read out more than one word. To write a coding algorithm
it is useful to know more about elements of type char. Each character is
assigned to an index. By increasing or decreasing the index it moves up or
down in the ascii-alphabet. E.g. char letter = ’A’ is assigned to 65. By
increasing letter+=1 the letter ’B’ is stored in the variable. You should
transform all letters into capital letters (toupper(int)) for simplification.
The strings can contain spaces and special characters which should not be
encoded. The function isalpha(int) returns true only if the character is an
alphabetic letter.

5

	(Some file processing in Linux)6Pts
	(Code snippets)8Pts
	(Caesar cipher)6Pts

