Exercise Sheet #1

Hendrik Wernecke <wernecke@itp.uni-frankfurt.de>
Philip Trapp <trapp@itp.uni-frankfurt.de>

Problem 1 (Random graphs 1) (0 P.)

For the random graph given in Fig.1 evaluate:

(a) coordination number z,
(b) connection probability p,
(c) average distance l,
(d) and clustering coefficient C.

Problem 2 (Random graphs 2) (0 P.)

Use a random number generator (dice, coin, roulette wheel, software...) to generate five random graphs with $N = 5$ vertices and connection probability $p = 2/3$.

(a) Evaluate the degree distribution for each graph and the degree distribution of the ensemble average.

(b) Derive a formula for the probability that a node has k edges.

Compare the simulation results (a) with the prediction via (b).

Figure 1: Random graph with N=8 vertices
Problem 3 (Driven harmonic oscillator) (0 P.)

Investigate the dynamics of the damped driven harmonic oscillator

\[\ddot{x}(t) = -\omega_0^2 x(t) - \alpha \dot{x}(t) + f_0 \cos(\Omega t + \phi_0), \]

where \(\omega_0 \) is the natural frequency of the oscillator and \(\alpha \) is the damping factor.

The oscillator is driven by an external harmonic force with amplitude \(f_0 \), driving frequency \(\Omega \) and initial phase \(\phi_0 \).

Solve Eq.(1) for some initial conditions \(x(t_0) = x_0, \dot{x}(t_0) = v_0 \) analytically.

Then sketch the system’s long-time evolution, i.e. \(x(t) \) for \(t \gg t_0 \), for each of the following cases:

(a) weak damping without driving: \(\frac{\alpha}{2} < \omega_0, f_0 = 0 \)

(b) strong damping without driving: \(\frac{\alpha}{2} > \omega_0, f_0 = 0 \)

(c) very weak damping in presence of ext. force: \(\frac{\alpha}{2} \ll \omega_0, f_0 \neq 0 \)

(d) very weak damping, i.e. energy up-take, with or without driving: \(\alpha < 0 \)

Compare these four qualitatively different long-term dynamics!