
Chapter 5

Complexity and Information Theory

What do we mean when by saying that a given system shows “complex behav-
ior”, can we provide precise measures for the degree of complexity? This
chapter offers an account of several common measures of complexity and the
relation of complexity to predictability and emergence.

The chapter starts with a self-contained introduction to information theory
and statistics. We will learn about probability distribution functions, the law
of large numbers and the central limiting theorem. We will then discuss the
Shannon entropy and the mutual information, which play central roles both
in the context of time series analysis and as starting points for the formulation
of quantitative measures of complexity. This chapter then concludes with a
short overview over generative approaches to complexity.

5.1 Probability Distribution Functions

Statistics is ubiquitous in everyday life and we are used to chat, e.g., about
the probability that our child will have blue or brown eyes, the chances to win
a lottery or those of a candidate to win the presidential elections. Statistics
is also ubiquitous in all realms of the sciences and basic statistical concepts
are used throughout these lecture notes.1

Variables and Symbols Probability distribution functions may be defined
for continuous or discrete variables as well as for sets of symbols,

x ∈ [0,∞], xi ∈ {1, 2, 3, 4, 5, 6}, α ∈ {blue,brown, green} .

For example we may define with p(x) the probability distribution of human
life expectancy x, with p(xi) the chances to obtain xi when throwing a dice or

1 In some areas, like the neurosciences or artificial intelligence, the term “Bayesian” is used

for approaches using statistical methods, in particular in the context of hypothesis building,

when estimates of probability distribution functions are derived from observations.
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with p(α) the probability to meet somebody having eyes of color α. Probabil-
ities are in any case positive definite and the respective distribution functions
normalized,

p(x), p(xi), p(α) ≥ 0,

∫ ∞
0

p(x) dx = 1 =
∑
α

p(α), . . . .

The notation used for a given variable will indicate in the following its nature,
i.e. whether it is a continuous or discrete variable, or denoting a symbol. For
continuous variables the distribution ρ(x) represents a probability density
function (PDF).

Continuous vs. Discrete Stochastic Variables When discretizing a
stochastic variable, e.g. when approximating an integral by a Riemann sum,∫ ∞

0

p(x) dx ≈
∞∑
i=0

p(xi)∆x, xi = ∆x (0.5 + i) , (5.1)

the resulting discrete distribution function p(xi) is not any more normalized;
the properly normalized discrete distribution function is p(xi)∆x. Note, that
both notations pi and p(xi) are used for discrete distribution functions.2

Mean, Median and Standard Deviation The average 〈x〉, denoted also
by x̄, and the standard deviation σ are given by

〈x〉 =

∫
x p(x) dx , σ2 =

∫
(x− x̄)

2
p(x) dx . (5.2)

One also calls x̄ the expectation value or just the mean, and σ2 the variance.3

For everyday life situations the median x̃,∫
x<x̃

p(x) dx =
1

2
=

∫
x>x̃

p(x) dx , (5.3)

is somewhat more intuitive than the mean. We have a 50 % chance to meet
somebody being smaller/taller than the median height.

Exponential Distribution Let us consider, as an illustration, the expo-
nential distribution, which describes, e.g. the distribution of waiting times
for radioactive decay,

2 The expression p(xi) is therefore context specific and can denote both a properly nor-
malized discrete distribution function as well as the value of a continuous probability

distribution function.
3 In formal texts on statistics and information theory the notation µ = E(X) is often

used for the mean µ, the expectation value E(X) and a random variable X, where X

represents the abstract random variable, whereas x denotes its particular value and pX(x)
the probability distribution.
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Fig. 5.1 Left : The exponential distribution exp(−t/T )/T , for an average waiting time

T = 1. The shaded area, t ∈ [0, ln(2)], is 1/2, where ln(2) is the median. Right : The normal
distribution exp(−x2/2)/

√
2π having a standard deviation σ = 1. The probability to draw

a result within one/two standard deviations of the mean (x ∈ [−1, 1] and x ∈ [−2, 2]

respectively, shaded regions), is 68 and 95 %

p(t) =
1

T
e−t/T ,

∫ ∞
0

p(t) dt = 1 , (5.4)

with the mean waiting time

〈t〉 =
1

T

∫ ∞
0

t e−t/T dt = −t e−t/T
∣∣∞
0

+

∫ ∞
0

e−t/T dt = T .

The median t̃ and the standard deviation σ are evaluated readily as

t̃ = T ln(2), σ = T .

In 50 % of times we have to wait less than t̃ ≈ 0.69T , which is smaller than
our average waiting time T , compare Fig. 5.1.

Standard Deviation and Bell Curve The standard deviation σ mea-
sures the size of the fluctuations around the mean. The standard deviation
is especially intuitive for the “Gaussian distribution”

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , 〈x〉 = µ, 〈(x− x̄)2〉 = σ2 , (5.5)

also denoted “Bell curve”, or “normal distribution”. Bell curves are ubiqui-
tous in daily life, characterizing cumulative processes (see Sect. 5.1.1).

The Gaussian falls off rapidly with distance from the mean µ, compare
Fig. 5.1. The probability to draw a value within n standard deviation of the
mean, viz the probability that x ∈ [µ − nσ, µ + nσ], is 68, 95, 99.7 % for
n = 1, 2, 3. Note, that these numbers are valid only for the Gaussian, not for
a general PDF.

Probability Generating Functions We recall the basic properties of the
generating function

G0(x) =
∑
k

pk x
k , (5.6)
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introduced in Sect. ??, for the probability distribution pk of a discrete variable
k = 0, 1, 2, . . ., namely

G0(1) =
∑
k

pk = 1, G′0(1) =
∑
k

k pk = 〈k〉 ≡ k̄ (5.7)

for the normalization and the mean 〈k〉 respectively. The second moment 〈k2〉

〈k2〉 =
∑
k

k2 pk x
k
∣∣∣
x=1

= x
d

dx
(xG′0(x))

∣∣∣
x=1

(5.8)

allows to express the standard deviation σ as

σ2 = 〈(k − k̄)2〉 = 〈k2〉 − k̄2 =
d

dx
(xG′0(x))

∣∣∣
x=1
− (G′0(1))

2

= G′′0(1) + G′0(1)− (G′0(1))
2
. (5.9)

The importance of probability generating functions lies in the fact that the
distribution for the sum k =

∑
i ki of independent stochastic variables ki is

generated by the product of the generating functions G
(i)
0 (x) of the respective

individual processes p
(i)
ki

, viz

G0(x) =
∑
k

pkx
k =

∏
i

G
(i)
0 (x), G

(i)
0 (x) =

∑
ki

p
(i)
ki
xki ,

see Sect. ?? for further details and examples.

5.1.1 The Law of Large Numbers

Throwing a dice many times and adding up the results obtained, the resulting
average will be close to 3.5N , where N is the number of throws. This is the
typical outcome for cumulative stochastic processes.4

Law of Large Numbers. Repeating N times a stochastic process with mean x̄ and

standard deviation σ , the mean and the standard deviation of the cumulative result
will approach x̄ N and σ

√
N respectively in the thermodynamic limit N →∞.

The law of large numbers implies, that one obtains x̄ as an averaged result,
with a standard deviation σ/

√
N for the averaged process. One needs to

increase the number of trials by a factor of four in order to improve accuracy
by a factor of 2.

Proof For a proof of the law of large numbers we consider a discrete pro-
cess pk described by the generating functional G0(x). This is not really a

4 Please take note of the difference between a cumulative stochastic process, when adding

the results of individual trials, and the “cumulative PDF” F (x) defined by F (x) =∫ x
−∞ p(x′)dx ′.
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Fig. 5.2 The flat distribution, which has a variance of σ2 = 1/12 is shown together with

the probability density of the sum of N = 3 flat distribution, which approximates already
very well the limiting Gaussian with σ = 1/6, compare Eq. (5.11), in accordance with the

central limiting theorem. 100 bins and a sampling of 105 have been used

restriction, since PDFs of continuous variables can be discretized with arbi-
trary accuracy. The cumulative stochastic process is then characterized by a
generating functional

GN0 (x), k̄(N) =
d

dx
GN0 (x)

∣∣∣
x=1

= N GN−10 (x)G′0(x)
∣∣∣
x=1

= N k̄

and the mean k̄(N) = Nk̄ respectively. For the standard deviation σ(N) of
the cumulative process we use Eq. (5.9),(

σ(N)
)2

=
d

dx

(
x
d

dx
GN0 (x)

) ∣∣∣
x=1
−
(
Nk̄
)2

=
d

dx

(
xN GN−10 (x)G′0(x)

)∣∣∣
x=1
− N2 (G′0(1))

2

= NG′0(1) + N(N − 1) (G′0(1))
2

+ NG′′0(1) − N2 (G′0(1))
2

= N
(
G′′0(1) +G′0(1)− (G′0(1))

2
)
≡ N σ2 , (5.10)

and obtain the law of large numbers.

Central Limiting Theorem The law of large numbers tells us, that the
variance σ2 is additive for cumulative processes, not the standard deviation
σ. The “central limiting theorem” then tells us, that the limiting distribution
function is a Gaussian.

Central Limiting Theorem. Given i = 1, . . . , N independent random variables xi,
distributed with mean µi and standard deviations σi. The cumulative distribution
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x =
∑
i xi is then described, for N →∞, by a Gaussian with mean µ =

∑
i µi and

variance σ2 =
∑
i σ

2
i .

In most cases one is not interested in the cumulative result, but in the
averaged one, compare Fig. 5.2, which is obtained by rescaling of variables

y = x/N, µ̄ = µ/N, σ̄ = σ/N, p(y) =
1

σ̄
√

2π
e−

(y−µ̄)2

2σ̄2 .

The rescaled standard deviation scales with 1/
√
N . To see this, just consider

identical processes with σi ≡ σ0,

σ̄ =
1

N

√∑
i

σ2
i =

σ0√
N

, (5.11)

in accordance with the law of large numbers.

Is Everything Boring Then? One might be tempted to draw the con-
clusion that systems containing a large number of variables are boring, since
everything seems to average out. This is actually not the case, the law of
large numbers holds only for statistically independent processes. Subsystems
of distributed complex systems are however dynamically dependent and these
dynamical correlations may lead to highly non-trivial properties in the ther-
modynamic limit.

5.1.2 Bayesian Statistics

The notions of statistics considered so far can be easily generalized to the
case of more than one random variable. Whenever a certain subset of the set
of random variables is considered to be the causing event for the complemen-
tary subset of variables one speaks of inference, a domain of the Bayesian
approach.

Bayesian Theorem Events and processes may have dependencies upon
each other. A physician will typically have to know, to give an example, the
probability that a patient has a certain illness, given that the patient shows
a specific symptom.

Conditional Probability. The probability that an event x occurs, given that an

event y has happened, is denoted “conditional probability” p(x|y).

Throwing a dice twice, the probability that the first throw resulted in a 1,
given that the total result was 4 = 1 + 3 = 2 + 2 = 3 + 1, is 1/3. Obviously,

p(x) =

∫
p(x|y) p(y) dy (5.12)
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holds. The probability of finding x is given by the probability of finding x
given y, p(x|y), integrated over the probability of finding y in the first place.

The probability distribution of throwing x in the first throw and y in
the second throw is determined, on the other hand, by the joint distribution
p(x, y).

Joint Probability Distribution. The probability of events x and y occurring is given
by the “joint probability” p(x, y).

Note, that
∫
p(x, y)dxdy = 1. The self-evident relations

p(x, y) = p(x|y) p(y) = p(y|x) p(x)

lead to
p(y|x) =

p(x|y) p(y)

p(x)
=

p(x|y) p(y)∫
p(x|y)p(y)dy

, (5.13)

where we have used Eq. (5.12) in the second step. Equation (5.13) is denoted
“Bayes’ theorem”. The conditional probability p(x|y) of x happing given that
y had occurred is denoted “likelihood”.

Bayesian Statistics As an exemplary application of Bayes’ theorem (5.13)
consider a medical test.

– The probability of being ill/healthy is given by p(y), y = ill/health.
– The likelihood of passing the test is p(x|y), with x = positive/negative.

Let’s consider an epidemic outbreak with, on the average, 1 % of the popu-
lation being infected. We assume that the medical test has an accuracy of
99 %, p(positive|ill) = 0.99 with a low rate p(positive|healty) = 0.02 of false
positives. The probability of a positively tested person of being infected is
then actually just 33

p(ill|pos) =
p(pos|ill)p(ill)

p(pos|ill)p(ill) + p(pos|healthy)p(healthy)

=
0.99 · 0.01

0.99 ∗ 0.01 + 0.02 ∗ 0.99
=

1

3
,

where we have used Bayes’ theorem (5.13). A second follow-up test is hence
necessary.

Statistical Inference We consider again a medical test, but in a slightly
different situation. A series of test is performed in a city where an outbreak
has occurred in order to estimate the percentage of people being infected.

We can then use expressing (5.12) for the marginal probability p(positive)
for obtaining positive test results,

p(positive) = 0.99 p(ill) + 0.02 (1− p(ill)) (5.14)

and solve for our estimate p(ill) of infections. In addition one needs to estimate
the confidence of the obtained result, viz the expected fluctuations due to the
limited number of tests actually carried out.
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Bayesian Inference We start by noting that both sides of Bayes’ theo-
rem (5.13) are properly normalized,∫

p(y|x) dy = 1 =

∫
p(x|y)p(y) dy

p(x)
.

For a given x the probability that any y happens is unity, and vice versa. For
a given x we may hence interprete the left-hand side as the probability that
y is true,

p1(y) ≡ p(x|y)p0(y)∫
p(x|y)p0(y)dy

. (5.15)

One denotes

– p1(y) = p(y|x) the “posterior” distribution,
– p(x|y) the likelihood and with
– p0(y) the “prior”.

Equation (5.15) constitutes the basis of Bayesian inference. In this setting one
is not interested in finding a self-consistent solution p0(y) = p1(y) = p(y).
Instead it is premised that one disposes of prior information, viz knowledge
and expectations, about the status of the world, p0(y). Performing an exper-
iment a new result x is obtained which is then used to improve the expecta-
tions of the world status through p1(y), using Eq. (5.15).

Bayesian Learning The most common application of Bayesian inference is
the situation when inference from a given set of experimental data needs to
be drawn, using (5.15) a single time.

Alternatively one can consider Eq. (5.15) as the basis of cognitive learn-
ing processes, updating the knowledge about the world iteratively with any
further observation x1, x2, . . . , xn,

pi(y) ∝ p(xi|y) pi−1(y), ∀y .

This update procedure of the knowledge pi(y) about the world is independent
of the grouping of observations xi, viz

p0 → p1 → · · · → pn and p0 → pn

yield the same result, due to the multiplicative nature of the likelihood
p(x|y), viz when considering in the last relation all consecutive observations
{x1, . . . , xn} as a single event.
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Fig. 5.3 For the logistic map with r = 3.9 and x0 = 0.6, two statistical analyses of the

time series xn, n = 0, . . . , N , with N = 106. Left : The distribution p(x) of the xn. Plotted

is Nbinp(x)/N , for Nbin = 10/100 bins (curve with square symbols and open vertical bars
respectively). The data is plotted at the midpoints of the respective bins. Right : The joint

probabilities p±±, as defined by Eq. (5.18), of consecutive increases/decreases of the xn.

The probability p−− that the data decreases consecutively twice vanishes

5.1.3 Time Series Characterization

In many cases one is interested in estimating the probability distribution
functions for data generated by some known or unknown process, like the
temperature measurements of a weather station. It is important, when doing
so, to keep a few caveats in mind.

Binning of Variables Here we will be dealing mainly with the time series
of data generated by dynamical systems. As an example we consider the
logistic map, compare Sect. ??,

xn+1 = f(xn) ≡ r xn (1− xn), xn ∈ [0, 1], r ∈ [0, 4] . (5.16)

The dynamical variable is continuous and in order to estimate the probability
distribution of the xn we need to bin the data. In Fig. 5.3 the statistics of a
time series in the chaotic regime, for r = 3.9, is given.

One needs to select the number of bins Nbin and, in general, also the
positions and the widths of the bins. When the data is not uniformly dis-
tributed one may place more bins in the region of interest, generalizing the
relation (5.1) through ∆x→ ∆xi, with the ∆xi being the width of the indi-
vidual bins.

For our illustrative example see Fig. 5.3, we have selected Nbin = 10/100
equidistant bins. The data is distributed over more bins, when Nbin increases.
In order to make the distribution functions for different number of bins com-
parable one needs to rescale them with Nbin , as it has been done for the data
shown in Fig. 5.3.

The selection of the binning procedure is in general a difficult choice. Fine
structure will be lost when Nbin is too low, but statistical noise will dominate
for a too large number of bins.



10 5 Complexity and Information Theory

Symbolization One denotes by “symbolization” the construction of a finite
number of symbols suitable for the statistical characterization of a given
time series.5 The binning procedure discussed above is a commonly used
symbolization procedure.

For a further example of a symbolization procedure we denote with δt =
±1,

δt = sign(xt − xt−1) =

{
1 xt > xt−1
−1 xt < xt−1

(5.17)

the direction of the time development. The consecutive development of the
δt may then be encoded in higher-level symbolic stochastic variables. For
example one might be interested in the joint probabilities

p++ = 〈p(δt = 1, δt−1 = 1)〉t p+− = 〈p(δt = 1, δt−1 = −1)〉t
p−+ = 〈p(δt = −1, δt−1 = 1)〉t p−− = 〈p(δt = −1, δt−1 = −1)〉t

, (5.18)

where p++ gives the probability that the data increases at least twice consec-
utively, etc., and where 〈. . . 〉t denotes the time average. In Fig. 5.3 the values
for the joint probabilities p±± are given for a selected time series of the logis-
tic map in the chaotic regime. The data never decreases twice consecutively,
p−− = 0, a somewhat unexpected result.

There are many possible symbolization procedures and the procedure used
to analyze a given time series determines the kind of information one may
hope to extract, as evident from the results illustrated in Fig. 5.3. The selec-
tion of the symbolization procedures needs to be given attention, and will be
discussed further in Sect. 5.2.1.

Self Averaging A time series produced by a dynamical system depends on
the initial condition and so will generally also the statistical properties of the
time series. As an example we consider the XOR series6

σt+1 = XOR(σt, σt−1), σt = 0, 1 . (5.19)

The four initial conditions 00, 01, 10 and 11 give rise to the respective time
series

. . . 000000000 . . . 101101101

. . . 110110110 . . . 011011011
(5.20)

where time runs from right to left and where we have underlined the ini-
tial conditions σ1 and σ0. The typical time series, occurring for 75 % of the
initial conditions, is . . . 011011011011 . . ., with p(0) = 1/3 and p(1) = 2/3 for
the probability to find a 0/1. When averaging over all four initial conditions,
we have on the other hand (2/3)(3/4) = 1/2 for the probability to find a 1.
Then

5 For continuous-time data, as for an electrocardiogram, an additional symbolization step
is necessary, the discretization of time. Here we consider however only discrete-time series.
6 Remember, that XOR(0, 0) = 0 = XOR(1, 1) and XOR(0, 1) = 1 = XOR(1, 0).
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p(1) =

{
2/3 typical
1/2 average

.

When observing a single time series we are likely to obtain the typical proba-
bility, analyzing many time series will result on the other hand in the average
probability.

Self Averaging. When the statistical properties of a time series generated by a

dynamical process are independent of the respective initial conditions, one says the

time series is “self averaging”.

The XOR series is not self averaging and one can generally not assume
self averaging to occur. An inconvenient situation whenever only a single
time series is available, as it is the case for most historical data, e.g. of past
climatic conditions.

XOR Series with Noise Most real-world processes involve a certain degree
of noise and one may be tempted to assume, that noise could effectively
restart the dynamics, leading to an implicitly averaging over initial condi-
tions. This assumption is not generally valid but works out for XOR process
with noise,

σt+1 =

{
XOR(σt, σt−1) probability1− ξ
¬XOR(σt, σt−1) probabilityξ

0 ≤ ξ � 1 . (5.21)

For low level of noise, ξ → 0, the time series

. . . 000000001101101101011011011011101101101100000000 . . .

has stretches of regular behavior interseeded by four types of noise
induced dynamics (underlined, time running from right to left). Denot-
ing with p000 and p011 the probability of finding regular dynamics of
type . . . 000000000 . . . and . . . 011011
011 . . . respectively, we find the master equation

ṗ011 = ξp000 − ξp011/3 = −ṗ000 (5.22)

for the noise-induced transition probabilities. In the stationary case p000 =
p011/3 for the XOR process with noise, the same ratio one would obtain for
the deterministic XOR series averaged over the initial conditions.

The introduction of noise generally introduces a complex dynamics akin
to the master Eq. (5.22) and it is generally to be expected that the resulting
time series is self-averaging. This is also the case for the OR time series, for
which the small noise limit does however not coincide with the time series
obtained in the absence of noise.

Time Series Analysis and Cognition Time series analysis is a tricky
business whenever the fundamentals of the generative process are unknown,
e.g. whether noise is important or not. This is however the setting in which
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cognitive systems, see Chap. ??, are operative. Our sensory organs, eyes and
ears, provide us with a continuous time series encoding environmental infor-
mation. Performing an informative and fast time series analysis is paramount
for surviving.

Online vs. offline analysis. If one performs an analysis of a previously recorded

time series one speaks of “offline” analysis. An analysis performed on-the-fly during

recording is denoted “online”.

Animals need to perform online analysis of their sensory data input
streams, otherwise they would not survive long enough to react.

Trailing Averages Online characterization of a time series in terms of
its basic statistical properties, like mean and standard deviation, is quite
straightforward.

We consider a continuous time input stream x(t) and define with

µt =
1

T

∫ ∞
0

dτ x(t− τ) e−τ/T (5.23)

σ2
t =

1

T

∫ ∞
0

dτ
(
x(t− τ)− µt

)2
e−τ/T (5.24)

the “trailing average” µt and the trailing variance σ2
t . The trailing average

exponentially discounts older data, the first two moments of the PDF of
the input stream x(t) are recovered in the limit T → ∞. The factor 1/T
in (5.23) and (5.24) normalizes the respective trailing averages. For the case
of a constant, time independent input x(t) ≡ x̄ we obtain correctly

µt →
1

T

∫ ∞
0

dτ x̄ e−τ/T = x̄ .

The trailing average can be evaluated by a simple online update rule, there
is no need to store all past data x(t − τ). To see this we calculate the time
dependence

µ̇t =
1

T

∫ ∞
0

dτ e−τ/T
d

dt
x(t− τ) =

−1

T

∫ ∞
0

dτ e−τ/T
d

dτ
x(t− τ) .

The last expression can be evaluated by a simple partial integration. One
obtains

µ̇t =
x(t)− µt

T
, (5.25)

and an analogous update rule for the variance σ2
t by substituting x→ (x−µ)2.

Expression (5.25) is an archetypical example of an online updating rule for a
time averaged quantity, here the trailing average µt.
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5.2 Entropy and Information

Entropy is a venerable concept from physics encoding the amount of disorder
present in a thermodynamic system at a given temperature. The “Second
Law of Thermodynamics” states, that entropy can only increase in an iso-
lated (closed) system. The second law has far reaching consequences, e.g.
determining the maximal efficiency of engines and power plants, and philo-
sophical implications for our understanding of the fundamentals underpinning
the nature of life as such.

Entropy and Life Living organisms have a body and such create ordered
structures from basic chemical constituents. Living beings therefore decrease
entropy locally, in their bodies, seemingly in violation of the second law.
In reality, the local entropy depressions are created on the expense of corre-
sponding entropy increases in the environment, in agreement with the second
law of thermodynamics. All living beings need to be capable of manipulating
entropy.

Information Entropy and Predictability Entropy is also a central con-
cept in information theory, where it is commonly denoted “Shannon entropy”
or “information entropy”. In this context one is interested in the amount of
information encoded by a sequence of symbols

. . . σt+2, σt+1, σt, σt−1, σt−2, . . . ,

e.g. when transmitting a message. Typically, in everyday computers, the σt
are words of bits. Let us consider two time series of bits, e.g.

. . . 101010101010 . . . , . . . 1100010101100 . . . . (5.26)

The first example is predictable, from the perspective of a time-series, and
ordered, from the perspective of an one-dimensional alignment of bits. The
second example is unpredictable and disordered respectively.

Information can be transmitted through a time series of symbols only
when this time series is not predictable. Talking to a friend, to illustrate this
statement, we will not learn anything new when capable of predicting his
next joke. We have therefore the following two perspectives,

high entropy =̂

{
large disorder physics

high information content information theory
,

and vice versa. Only seemingly disordered sequences of symbols are unpre-
dictable and thus potential carriers of information. Note, that the predictabil-
ity of a given time series, or its degree of disorder, may not necessarily be
as self evident as in above example, Eq. (5.26), depending generally on the
analysis procedure used, see Sect. 5.2.1.
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Extensive Information In complex system theory, as well as in physics, we
are often interested in properties of systems composed of many subsystems.

Extensive and Intensive Properties. For systems composed of N subsystems a prop-

erty is denoted “extensive” if it scales as O(N1) and “intensive” when it scales with
O(N0).

A typical extensive property is the mass, a typical intensive property the
density. When lumping together two chunks of clay, their mass adds, but the
density does not change.

One demands, both in physics and in information theory, that the entropy
should be an extensive quantity. The information content of two indepen-
dent transmission channels should be just the sum of the information carried
by the two individual channels.

Shannon Entropy The Shannon entropy H[p] is defined by

H[p] = −
∑
xi

p(xi) logb(p(xi)) = −〈 logb(p) 〉, H[p] ≥ 0 , (5.27)

where p(xi) is a normalized discrete probability distribution function and
where the brackets in H[p] denote the functional dependence.7 Note, that
−p log(p) ≥ 0 for 0 ≤ p ≤ 1, see Fig. 5.4, the entropy is therefore strictly
positive.
b is the base of the logarithm used in Eq. (5.27). Common values of b are 2,

Euler’s number e and 10. The corresponding units of entropy are then termed
“bit” for b = 2, “nat” for b = e and “digit” for b = 10. In physics the natural
logarithm is always used and there is an additional constant (the Boltzmann
constant kB) in front of the definition of the entropy. Here we will use b = 2
and drop in the following the index b.

Extensiveness of the Shannon Entropy The log-dependence in the def-
inition of the information entropy in Eq. (5.27) is necessary for obtaining an
extensive quantity. To see this, let us consider a system composed of two
independent subsystems. The joint probability distribution is multiplicative,

p(xi, yj) = pX(xi)pY (yj), log(p(xi, yj)) = log(pX(xi)) + log(pY (yj)) .

The logarithm is the only function which maps a multiplicative input onto
an additive output. Consequently,

H[p] = −
∑
xi,yj

p(xi, yj) log(p(xi, yj))

7 A function f(x) is a function of a variable x; a functional F [f ] is, on the other hand,
functionally dependent on a function f(x). In formal texts on information theory the

notation H(X) is often used for the Shannon entropy and a random variable X with
probability distribution pX(x).
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= −
∑
xi,yj

pX(xi)pY (yj)
[

log(pX(xi)) + log(pY (yj))
]

= −
∑
xi

pX(xi)
∑
yj

pY (yj) log(pY (yj))

−
∑
yj

pY (yj)
∑
xi

pX(xi) log(pX(xi))

= H[pY ] + H[pX ] ,

as necessary for the extensiveness of H[p]. Hence the log-dependence in
Eq. (5.27).

Degrees of Freedom We consider a discrete system with xi ∈ [1, . . . , n],
having n “degrees of freedom” in physics’ slang. If the probability of finding
any value is equally likely, as it is the case for a thermodynamic system at
infinite temperatures, the entropy is

H = −
∑
xi

p(xi) log(p(xi)) = −n 1

n
log(1/n) = log(n) , (5.28)

a celebrated result. The entropy grows logarithmically with the number of
degrees of freedom.

Shannon’s Source Coding Theorem So far we have shown, that
Eq. (5.27) is the only possible definition, modulo renormalizing factors,
for an extensive quantity depending exclusively on the probability distribu-
tion. The operative significance of the entropy H[p] in terms of informational
content is given by Shannon’s theorem.

Source Coding Theorem. Given a random variable x with a PDF p(x) and entropy
H[p]. The cumulative entropy NH [p] is then, for N → ∞, a lower bound for the

number of bits necessary when trying to compress N independent processes drawn

from p(x).
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If we compress more, we will lose information, the entropy H[p] is therefore
a measure of information content.

Entropy and Compression Let’s make an example. Consider we have
words made out of the four letter alphabet A, B, C and D. Suppose, that
these four letters would not occur with the same probability, the relative
frequencies being

p(A) =
1

2
, p(B) =

1

4
, p(C) =

1

8
= p(D) .

When transmitting a long series of words using this alphabet we will have
the entropy

H[p] =
−1

2
log(1/2) − 1

4
log(1/4) − 1

8
log(1/8) − 1

8
log(1/8)

=
1

2
+

2

4
+

3

8
+

3

8
= 1.75 , (5.29)

since we are using the logarithm with base b = 2. The most naive bit encoding,

A→ 00, B → 01, C → 10, D → 11 ,

would use exactly 2 bit, which is larger than the Shannon entropy. An optimal
encoding would be, on the other hand,

A→ 1, B → 01, C → 001, D → 000 , (5.30)

leading to an average length of words transmitted of

p(A) + 2p(B) + 3p(C) + 3p(D) =
1

2
+

2

4
+

3

8
+

3

8
= 1.75 , (5.31)

which is the same as the information entropy H[p]. The encoding given in
Eq. (5.30) is actually “prefix-free”. When we read the words from left to right,
we know where a new word starts and stops,

110000010101 ←→ AADCBB ,

without ambiguity. Fast algorithms for optimal, or close to optimal encoding
are clearly of importance in the computer sciences and for the compression
of audio and video data.

Discrete vs. Continuous Variables When defining the entropy we have
considered hitherto discrete variables. The information entropy can also be
defined for continuous variables. We should be careful though, being aware
that the transition from continuous to discrete stochastic variables, and vice
versa, is slightly non-trivial, compare Eq. (5.1):
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H[p]
∣∣∣
con

= −
∫
p(x) log(p(x)) dx ≈ −

∑
i

p(xi) log(p(xi))∆x

= −
∑
i

pi log(pi/∆x) = −
∑
i

pi log(pi) +
∑
i

pi log(∆x)

= H[p]
∣∣∣
dis

+ log(∆x) , (5.32)

where pi = p(xi)∆x is here the properly normalized discretized PDF, compare
Eq. (5.1). The difference log(∆x) between the continuous-variable entropy
H[p]

∣∣
con

and the discretized version H[p]
∣∣
dis

diverges for ∆x → 0, the tran-
sition is discontinuous.

Entropy of a Continuous PDF From Eq. (5.32) it follows, that the Shan-
non entropy H[p]

∣∣
con

can be negative for a continuous probability distribution
function. As an example consider the flat distribution

p(x) =

{
1/ε forx ∈ [0, ε]

0 otherwise
,

∫ ε

0

p(x) dx = 1

in the small interval [0, ε], with the entropy

H[p]
∣∣∣
con

= −
∫ ε

0

1

ε
log(1/ε) dx = log(ε) < 0, for ε < 1 .

The absolute value of the entropy is hence not meaningful for continuous
PDFs, only entropy differences. H[p]

∣∣
con

is therefore also referred-to as “dif-
ferential entropy”.

Maximal Entropy Distributions Which kind of distributions maximize
entropy, viz information content? Remembering that

lim
p→0,1

p log(p) = 0, log(1) = 0 ,

see Fig. 5.4, it is intuitive that a flat distribution might be optimal. This is
indeed correct in the absence of any constraint other than the normalization
condition

∫
p(x)dx = 1.

Variational Calculus We consider generically the task to maximize the
functional

H[p] =

∫
f(p(x)) dx , f(p) = −p log(p) , (5.33)

where the notation used will turn out useful later on. Maximizing a functional
like H[p] is a typical task of variational calculus. One considers with

p(x) = popt(x) + δp(x), δp(x)arbitrary



18 5 Complexity and Information Theory

a general variation of δp(x) around the optimal function popt(x). At optimal-
ity, the dependence of H[p] on the variation δp should be stationary,

0 ≡ δH[p] =

∫
f ′(p) δp dx , 0 = f ′(p) , (5.34)

where f ′(p) = 0 follows from the fact that δp is an arbitrary function.
For the entropy functional f(p) = −p log(p) we find then with

f ′(p) = − log(p)− 1 = 0, p(x) = const. (5.35)

the expected flat distribution.

Maximal Entropy Distributions with Constraints We consider now
the entropy maximization under the constraint of a fixed average µ,

µ =

∫
x p(x) dx . (5.36)

This condition can be enforced by a Lagrange parameter λ via

f(p) = −p log(p) − λxp .

The stationary condition f ′(p) = 0 then leads to

f ′(p) = − log(p)− 1− λx = 0, p(x) ∝ 2−λx ∼ e−x/µ (5.37)

the exponential distribution, see Eq. (5.4), with mean µ. The Lagrange
parameter λ needs to be determined such that the condition of fixed mean,
Eq. (5.36), is satisfied. For a support x ∈ [0,∞], as assumed above, we have
λ loge(2) = 1/µ.

One can generalize this procedure and consider distribution maximizing
the entropy under the constraint of a given mean µ and variance σ2,

µ =

∫
x p(x) dx , σ2 =

∫
(x− µ)2 p(x) dx . (5.38)

Generalizing the derivation leading to (5.37) one sees that the maximal
entropy distribution constrained by (5.38) is a Gaussian, as given by expres-
sion (5.5).

Pairwise Constraints We consider a joint distribution function p(x1, . . . , xn)
for n variables xi with pairwise correlations

〈xixj〉 =

∫
dxnxixjp(x1, . . . , xn) . (5.39)

Pair correlations can be measured in many instances experimentally and can
be hence considered as constraints for modelling. One can adjust in the max-
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imal entropy distribution

p(x1, . . . , xn) =
e−H

N
, H =

∑
ij

Jijxixj +
∑
i

λixi (5.40)

the n(n − 1)/2 variational parameters Jij , in order to reproduce given
n(n − 1)/2 pairwise correlations (5.39), and the Lagrange multiplier λi for
regulating the respective individual averages 〈xi〉.

The maximal entropy distribution (5.40) has the form of a Boltzman fac-
tor of statistical mechanics with H representing the Hamiltonian, the energy
function, and with the coupling constants Jij encoding the strength of pair-
wise interactions.

5.2.1 Information Content of a Real-World Time
Series

The Shannon entropy is a very powerful concept in information theory. The
encoding rules are typically known in information theory, there is no ambi-
guity regarding the symbolization procedure (see Sect. 5.1.3) to employ when
receiving a message via some technical communication channel. This is how-
ever not any more the case, when we are interested in determining the infor-
mation content of real-world processes, e.g. the time series of certain financial
data or the data stream produced by our sensory organs.

Symbolization and Information Content The result obtained for the
information content of a real-world time series {σt} depends in general on
the symbolization procedure used. Let us consider, as an example, the first
time series of Eq. (5.26),

. . . 101010101010 . . . . (5.41)

When using a 1-bit symbolization procedure, we have

p(0) =
1

2
= p(1), H[p] = −2

1

2
log(1/2) = 1 ,

as expected. If, on the other hand, we use a 2-bit symbolization, we find

p(00) = p(11) = p(01) = 0, p(10) = 1, H[p] = − log(1) = 0 .

When 2-bit encoding is presumed, the time series is predictable and carries no
information. This seems intuitively the correct result and the question is: Can
we formulate a general guiding principle which tells us which symbolization
procedure would yield the more accurate result for the information content
of a given time series?
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The Minimal Entropy Principle The Shannon entropy constitutes a
lower bound for the number of bits, per symbol, necessary when compressing
the data without loss of information. Trying various symbolization proce-
dures, the symbolization procedure yielding the lowest information entropy
then allows us to represent, without loss of information, a given time series
with the least number of bits.

Minimal Entropy Principle. The information content of a time series with unknown
encoding is given by the minimum (actually the infimum) of the Shannon entropy

over all possible symbolization procedures.

The minimal entropy principle then gives us a definite answer with respect
to the information content of the time series given in Eq. (5.41). We have
seen that at least one symbolization procedure yields a vanishing entropy
and one cannot get a lower value, since H[p] ≥ 0. This is the expected result,
since . . . 01010101 . . . is predictable.

Information Content of a Predictable Time Series Note, that a van-
ishing information content H[p] = 0 only implies that the time series is
strictly predictable, not that it is constant. One therefore needs only a finite
amount of information to encode the full time series, viz for arbitrary lengths
N → ∞. When the time series is predictable, the information necessary to
encode the series is intensive and not extensive.

Symbolization and Time Horizons The minimal entropy principle is
rather abstract. In practice one may not be able than to try out more than
a handful of different symbolization procedures. It is therefore important to
gain an understanding of the time series at hand.

An important aspect of many time series is the intrinsic time horizon τ .
Most dynamical processes have certain characteristic time scales and memo-
ries of past states are effectively lost for times exceeding these intrinsic time
scales. The symbolization procedure used should therefore match the time
horizon τ .

This is what happened when analyzing the time series given in Eq. (5.41),
for which τ = 2. A 1-bit symbolization procedure implicitly presumes that
σt and σt+1 are statistically independent and such missed the intrinsic time
scale τ = 2, in contrast to the 2-bit symbolization procedure.

5.2.2 Mutual Information

We have been considering so far the statistical properties of individual
stochastic processes as well as the properties of cumulative processes gen-
erated by the sum of stochastically independent random variables. In order
to understand complex systems we need to develop tools for the description
of a large number of interdependent processes. As a first step towards this
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direction we consider in the following the case of two stochastic processes,
which may now be statistically correlated.

Two Channels – Markov Process We start by considering an illustrative
example of two correlated channels σt and τt, with

σt+1 = XOR(σt, τt), τt+1 =

{
XOR(σt, τt) probability1− ξ
¬XOR(σt, τt) probabilityξ

.

(5.42)

This dynamics has the “Markov property”, the value for the state {σt+1, τt+1}
depends only on the state at the previous time step, viz on {σt, τt}.

Markov Process. A discrete-time memory-less dynamical process is denoted a

“Markov process”. The likelihood of future states depends only on the present state,
and not on any past states.

When the state space is finite, as in our example, the term “Markov chain”
is also used. We will not adhere here to the distinction which is sometimes
made between discrete and continuous time, with Markov processes being
formulated for discrete time and “master equations” describing stochastic
processes for continuous time.

Joint Probabilities A typical time series of the Markov chain specified in
Eq. (5.42) looks like

. . . σt+1σt . . . : 0 0 0 1 0 0 0 0 0 0 1 0 1 0 . . .
. . . τt+1τt . . . : 0 0 0 1 1 0 0 0 0 0 1 1 1 1 . . .

,

where we have underlined instances of noise-induced transitions. For ξ = 0
the stationary state is {σt, τt} = {0, 0} and therefore fully correlated. We now
calculate the joint probabilities p(σ, τ) for general values of noise ξ, using the
transition probabilities

pt+1(0, 0)= (1− ξ) [pt(1, 1) + pt(0, 0)]
pt+1(1, 1)= (1− ξ) [pt(1, 0) + pt(0, 1)]

,
pt+1(1, 0)= ξ [pt(0, 1) + pt(1, 0)]
pt+1(0, 1)= ξ [pt(0, 0) + pt(1, 1)]

,

for the ensemble averaged joint probability distributions pt(σ, τ) =
〈p(σt, τt)〉ens , where the average 〈..〉ens denotes the average over an ensemble
of time series. For the solution in the stationary case pt+1(σ, τ) = pt(σ, τ) ≡
p(σ, τ) we use the normalization

p(1, 1) + p(0, 0) + p(1, 0) + p(0, 1) = 1 .

We find

p(1, 1) + p(0, 0) = 1− ξ, p(1, 0) + p(0, 1) = ξ ,

by adding the terms ∝ (1− ξ) and ∝ ξ respectively. It then follows immedi-
ately
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p(0, 0) = (1− ξ)2
p(1, 1) = (1− ξ)ξ ,

p(1, 0) = ξ2

p(0, 1) = ξ(1− ξ) . (5.43)

For ξ= 1/2 the two channels become 100 % uncorrelated, as the τ -channel is
then fully random. The dynamics of the Markov process given in Eq. (5.42) is
self averaging and it is illustrative to verify the result for the joint distribution
function, Eq. (5.43), by a straightforward numerical simulation.

Entropies Using the notation

pσ(σ′) =
∑
τ ′

p(σ′, τ ′), pτ (τ ′) =
∑
σ′

p(σ′, τ ′)

for the “marginal distributions” pσ and pτ , we find from Eq. (5.43)

pσ(0) = 1− ξ
pσ(1) = ξ

,
pτ (0) = 1− 2ξ(1− ξ)
pτ (1) = 2ξ(1− ξ) (5.44)

for the distributions of the two individual channels. We may now evaluate
both the entropies of the individual channels, H[pσ] and H[pτ ], the “marginal
entropies”, viz

H[pσ] = −〈log(pσ)〉, H[pτ ] = −〈log(pτ )〉 , (5.45)

as well as the entropy of the combined process, termed “joint entropy”,

H[p] = −
∑
σ′,τ ′

p(σ′, τ ′) log(p(σ′, τ ′)) . (5.46)

In Fig. 5.5 the respective entropies are plotted as a function of noise strength
ξ. Some observations:

• In the absence of noise, ξ= 0, both the individual channels as well as the
combined process are predictable and all three entropies, H[p], H[pσ] and
H[pτ ], vanish consequently.

• For maximal noise ξ = 0.5, the information content of both individual
chains is 1 bit and of the combined process 2 bits, implying statistical inde-
pendence.

• For general noise strengths 0 < ξ < 0.5, the two channels are statistically
correlated. The information content of the combined process H[p] is conse-
quently smaller than the sum of the information contents of the individual
channels, H[pσ] +H[pτ ].

Mutual Information The degree of statistical dependency of two channels
can be measured by comparing the joint entropy with the respective marginal
entropies.

Mutual Information. For two stochastic processes σt and τt the difference

I(σ, τ) = H[pσ ] +H[pτ ]−H[p] (5.47)
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Fig. 5.5 For the two-channel XOR-Markov chain {σt, τt} with noise ξ, see Eq. (5.42),

the entropy H[p] of the combined process (full line, Eq. (5.46)), of the individual channels
(dashed lines, Eq. (5.45)), H[pσ ] and H[pτ ], and of the sum of the joint entropies (dot-

dashed line). Note the positiveness of the mutual information, I(σ, τ) = H[pσ ] +H[pτ ]−
H[p] > 0

between the sum of the marginal entropies H[pσ ]+H[pτ ] and the joint entropy H[p]

is denoted “mutual information” I(σ, τ).

When two dynamical processes become correlated, information is lost and
this information loss is given by the mutual information. Note, that I(σ, τ) =
I[p] is a functional of the joint probability distribution p only, the marginal
distribution functions pσ and pτ being themselves functionals of p.

Positiveness We will now discuss some properties of the mutual informa-
tion, considering the general case of two stochastic processes described by the
joint PDF p(x, y) and the respective marginal PDFs pX(x) =

∫
p(x, y)dy ,

pY (y) =
∫
p(x, y)dx .

The mutual information

I(X,Y ) = 〈log(p)〉 − 〈log(pX)〉 − 〈log(pY )〉 I(X,Y ) ≥ 0 , (5.48)

is strictly positive. Rewriting the mutual information as

I(X,Y ) =

∫
p(x, y)

[
log(p(x, y))− log(pX(x))− log(pY (y))

]
dx dy (5.49)

=

∫
p(x, y) log

(
p(x, y)

pX(x)pY (y)

)
dx dy = −

∫
p log

(
pXpY
p

)
dx dy ,

we can easily show that I(X,Y ) ≥ 0 follows from the concaveness of the
logarithm, see Fig. 5.4,

log(p1x1 + p2x2) ≥ p1 log(x1) + p2 log(x2), ∀x1, x2 ∈ [0,∞] , (5.50)

and p1, p2 ∈ [0, 1], with p1 + p2 = 1; any cord of a concave function lies
below the graph. We can regard p1 and p2 as the coefficients of a distribution
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function and generalize,

p1δ(x− x1) + p2δ(x− x2) −→ p(x) ,

where p(x) is now a generic, properly normalized PDF. The concaveness
condition, Eq. (5.50), then reads

log

(∫
p(x) x dx

)
≥
∫
p(x) log(x) dx , ϕ (〈x〉) ≥ 〈ϕ(x) 〉 , (5.51)

the “Jensen inequality”, which holds for any concave function ϕ(x). This
inequality remains valid when substituting x→ pXpY /p for the argument of
the logarithm.8 We then obtain for the mutual information, Eq. (5.49),

I(X,Y ) = −
∫
p log

(
pXpY
p

)
dx dy ≥ − log

(∫
p
pXpY
p

dx dy

)
= − log

(∫
pX(x) dx

∫
pY (y) dy

)
= − log(1) = 0 ,

viz I(X,Y ) is non-negative. Information can only be lost when correlating
two previously independent processes.

Conditional Entropy There are various ways to rewrite the mutual infor-
mation, using Bayes theorem p(x, y) = p(x|y)pY (y) between the joint PDF
p(x, y), the conditional probability distribution p(x|y) and the marginal PDF
pY (y), e.g.

I(X,Y ) =

〈
log

(
p

pXpY

)〉
=

∫
p(x, y) log

(
p(x|y)

pX(x)

)
dx dy

≡ H(X) − H(X|Y ) , (5.52)

where we have used the notation H(X) = H[pX ] for the marginal entropy
and defined the “conditional entropy”

H(X|Y ) = −
∫
p(x, y) log(p(x|y)) dx dy . (5.53)

The conditional entropy is positive for discrete processes, since

−p(xi, yj) log(p(xi|yj)) = −p(xi|yj)pY (yj) log(p(xi|yj))

is positive, as −p log(p)≥ 0 in the interval p∈ [0, 1], compare Fig. 5.4 and
Eq. (5.32) for the change-over from continuous to discrete variables. Several

8 For a proof consider the generic substitution x→ q(x) and a transformation of variables

x→ q via dx = dq/q′, with q′ = dq(x)/dx , for the integration in Eq. (5.51).



5.2 Entropy and Information 25

variants of the conditional entropy may be used to extend the statistical
complexity measures discussed in Sect. 5.3.1.

Causal Dependencies For independent processes one has p(x, y) =
p(x)p(y) = p(x|y)p(y) and hence

p(x|y) = p(x), H(X|Y ) → H(X) .

The opposite extreme is realized when the first channel is just a function of
the second channel, viz when

xi = f(yi), p(xi|yi) = δxi,f(yi), p(xi, yi) = δxi,f(yi) p(yi) .

The conditional entropy (5.53) then vanishes,

H(X|Y ) = −
∑
xi,yj

δxi,f(yj) pY (yj) log
(
δxi,f(yj)

)
= 0 ,

since δxi,f(yj) is either unity, in which case log(δ) = log(1) = 0, or zero, in
which case 0 log(0) vanishes as a limiting process. The conditional entropy
H(X|Y ) measures hence the amount of information, present in the stochastic
process X, which is not causaly related to the process Y .

The mutual entropy reduces to the marginal entropy, as a corollary,

I(X,Y )→ H(X) ,

for the case that X is fully determined by Y . Compare Eq. (5.52).

5.2.3 Kullback-Leibler Divergence

One is often interested in comparing two distribution functions p(x) and q(x)
with respect to their similarity. When trying to construct a measure for the
degree of similarity one is facing the dilemma that probability distributions
are positive definite and one can hence not define a scalar product as for
vectors; two PDFs cannot be orthogonal. It is however possible to define
with the “Kullback-Leibler divergence” a positive definite measure.

Kullback-Leibler Divergence. Given two probability distribution functions p(x) and

q(x) the functional

K[p; q] =

∫
p(x) log

(
p(x)

q(x)

)
dx ≥ 0 (5.54)

is a non-symmetric measure for the difference between p(x) and q(x).

The Kullback-Leibler divergence K[p; q] is also denoted “relative entropy”
and the proof for K[p; q] ≥ 0 is analogous to the one for the mutual informa-
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tion given in Sect. 5.2.2. The Kullback-Leibler divergence vanishes for iden-
tical PDFs, viz when p(x) ≡ q(x).

Relation to the χ2 test We consider the case that the two distribution
functions p and q are nearly identical,

q(x) = p(x) + δp(x), δp(x)� 1 ,

and expand K[p; q] in powers of δp(x), using

log(q) = log(p+ δp) ≈ log(p) +
δp

p
−
(
δp

p

)2

+ . . .

and obtaining

K[p; q] ≈
∫

dx p

[
log(p)− log(p)− δp

p
+

(
δp

p

)2
]

=

∫
dx

(δp)2

p
=

∫
dx

(p− q)2

p
, (5.55)

since
∫
δp dx = 0, as a consequence of the normalization conditions

∫
p dx =

1 =
∫
q dx . This measure for the similarity of two distribution functions is

termed “χ2 test”. It is actually symmetric under exchanging q ↔ p, up to
order (δp)2.

Example As a simple example we consider two distributions, p(σ) and q(σ),
for a binary variable σ = 0, 1,

p(0) = 1/2 = p(1), q(0) = α, q(1) = 1− α , (5.56)

with p(σ) being flat and α ∈ [0, 1]. The Kullback-Leibler divergence,

K[p; q] =
∑
σ=0,1

p(σ) log

(
p(σ)

q(σ)

)
=
−1

2
log(2α) − 1

2
log(2(1− α))

= − log(4(1− α)α) / 2 ≥ 0 ,

is unbounded, since limα→0,1K[p; q]→∞. Interchanging p↔ q we find

K[q; p] = α log(2α) + (1− α) log(2(1− α))

= log(2) + α log(α) + (1− α) log(1− α) ≥ 0 ,

which is now finite in the limit limα→0,1. The Kullback-Leibler divergence is
highly asymmetric, compare Fig. 5.6.

Kullback-Leibler Divergence vs. Mutual Information The mutual
information, Eq. (5.49), is a special case of the Kullback-Leibler Divergence.
We first write (5.54) for the case that p and q depend on two variables x and
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Fig. 5.6 For the two PDFs p and q parametrized by α, see Eq. (5.56), the respective

Kullback-Leibler divergences K[p; q] (dashed line) and K[q; p] (full line). Note the maximal
asymmetry for α→ 0, 1, where limα→0,1K[p; q] =∞

y,

K[p; q] =

∫
p(x, y) log

(
p(x, y)

q(x, y)

)
dx dy . (5.57)

This expression is identical to the mutual information (5.49) when considering
for q(x, y) the product of the two marginal distributions of p(x, y),

q(x, y) = p(x)p(y), p(x) =

∫
p(x, y) dy , p(y) =

∫
p(x, y) dx .

Two independent processes are described by the product of their PDFs. The
mutual information hence measures the distance between a joint distribution
p(x, y) and the product of its marginals, viz the distance between correlated
and independent processes.

Fisher Information The Fisher information F (θ) measures the sensitivity
of a distribution function p(y, θ) with respect to a given parametric depen-
dence θ,

F (θ) =

∫ (
∂

∂θ
ln(p(y, θ))

)2

p(y, θ) dy . (5.58)

In typical applications the parameter θ is a hidden observable one may be
interested to estimate.

Kullback-Leibler Divergence vs. Fisher Information We consider the
infinitesimal Kullback-Leibler divergence between p(y, θ) and p(y, θ + δθ),

K =

∫
dy p(y, θ) log

(
p(y, θ)

p(y, θ + δθ)

)
≈ −

∫
dy p log

(
p+ p′δθ

p

)
= −

∫
dy

∂p(y, θ)

∂θ
δθ +

(δθ)2

2

∫
dy

1

p(y, θ)

(
∂p(y, θ)

∂θ

)2

(5.59)
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Fig. 5.7 The degree of complexity (full line) should be minimal both in the fully ordered

and the fully disordered regime. For some applications it may however be meaningful to
consider complexity measures maximal for random states (dashed line)

with p = p(y, θ) and p′ = ∂p(y, θ)/∂θ. The first term in (5.59) can be written
as

(−δθ) ∂
∂θ

∫
dy p(y, θ) = (−δθ) ∂

∂θ
1 ≡ 0 ,

and vanishes. The second term in (5.59) contains the Fisher informa-
tion (5.58) and hence

K
[
p(y, θ); p(y, θ + δθ)

]
= F (θ)

(δθ)2

2
, (5.60)

which establishes the role of the Fisher information as a metric.

5.3 Complexity Measures

Can we provide a single measure, or a small number of measures, suitable for
characterizing the “degree of complexity” of any dynamical system at hand?
This rather philosophical question has fascinated researchers for decades and
no definitive answer is known.

The quest of complexity measures touches many interesting topics in
dynamical system theory and has led to a number of powerful tools suitable
for studying dynamical systems, the original goal of developing a one-size-fit-
all measure for complexity seems however not anymore a scientifically valid
target. Complex dynamical systems can show a huge variety of qualitatively
different behaviors, one of the reasons why complex system theory is so fas-
cinating, and it is not appropriate to shove all complex systems into a single
basket for the purpose of measuring their degree of complexity with a single
yardstick.
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Intuitive Complexity The task of developing a mathematically well
defined measure for complexity is handicapped by the lack of a precisely
defined goal. In the following we will discuss some selected prerequisites and
constraints one may postulate for a valid complexity measure. In the end it
is, however, up to our intuition for deciding whether these requirements are
appropriate or not.

An example of a process one may intuitively attribute a high degree of
complexity are the intricate spatio-temporal patterns generated by the forest
fire model discussed in Sect. ??, and illustrated in Fig. ??, with perpetually
changing fronts of fires burning through a continuously regrowing forest.

Complexity vs. Randomness A popular proposal for a complexity mea-
sure is the information entropy H[p], see Eq. (5.27). It vanishes when the
system is regular, which agrees with our intuitive presumption that complex-
ity is low when nothing happens. The entropy is however maximal for random
dynamics, as shown in Fig. 5.5.

It is a question of viewpoints to which extend one should consider ran-
dom systems as complex, compare Fig. 5.7. For some considerations, e.g.
when dealing with “algorithmic complexity” (see Sect. 5.3.2) it makes sense to
attribute maximal complexity degrees to completely random sets of objects.
In general, however, complexity measures should be concave and minimal for
regular behavior as well as for purely random sequences.

Complexity of Multi-component Systems Complexity should be a pos-
itive quantity, like entropy. Should it be, however, extensive or intensive? This
is a difficult and highly non-trivial question to ponder.

Intuitively one may demand complexity to be intensive, as one would not
expect to gain complexity when considering the behavior of a set of N inde-
pendent and identical dynamical systems. On the other side we cannot rule
out that N strongly interacting dynamical systems could show more and more
complex behavior with an increasing number of subsystems, e.g. we consider
intuitively the global brain dynamics to be orders of magnitude more complex
than the firing patterns of the individual neurons.

There is no simple way out of this quandary when searching for a single
one-size-fits-all complexity measure. Both intensive and extensive complexity
measures have their areas of validity.

Complexity and Behavior The search for complexity measures is not just
an abstract academic quest. As an example consider how bored we are when
our environment is repetitive, having low complexity, and how stressed when
the complexity of our sensory inputs is too large. There are indeed indica-
tions that a valid behavioral strategy for highly developed cognitive systems
may consist in optimizing the degree of complexity. Well defined complexity
measures are necessary in order to quantify this intuitive statement mathe-
matically.
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5.3.1 Complexity and Predictability

Interesting complexity measures can be constructed using statistical tools,
generalizing concepts like information entropy and mutual information. We
will consider here time series generated from a finite set of symbols. One
may, however, interchange the time label with a space label in the following,
whenever one is concerned with studying the complexity of spatial structures.

Stationary Dynamical Processes As a prerequisite we need stationary
dynamical processes, viz dynamical processes which do not change their
behavior and their statistical properties qualitatively over time. In practice
this implies that the time series considered, as generated by some dynamical
system, has a finite time horizon τ . The system might have several time scales
τi ≤ τ , but for large times t� τ all correlation functions need to fall off expo-
nentially, like the autocorrelation function defined in Sect. ??. Note, that this
assumption may break down for critical dynamical systems, which are char-
acterized, as discussed in Chap. ??, by dynamical and statistical correlations
decaying only slowly, with an inverse power of time.

Measuring Joint Probabilities For times t0, t1, . . ., a set of symbols X,
and a time series containing n elements,

xn, xn−1, . . . , x2, x1, xi = x(ti), xi ∈ X (5.61)

we may define the joint probability distribution

pn : p(xn, . . . , x1) . (5.62)

The joint probability p(xn, . . . , x1) is not given a priori. It needs to be mea-
sured from an ensemble of time series. This is a very demanding task as
p(xn, . . . , x1) has (Ns)

n
components, with Ns being the number of symbols

in X.
It clearly makes no sense to consider joint probabilities pn for time differ-

ences tn � τ , the evaluation of joint probabilities exceeding the intrinsic time
horizon τ is a waste of effort. In practice finite values of n are considered, tak-
ing subsets of length n of a complete time series containing normally a vastly
larger number of elements. This is an admissible procedure for stationary
dynamical processes.

Entropy Density We recall the definition of the Shannon entropy

H[pn] = −
∑

xn,...,x1∈X
p(xn, . . . , x1) log(p(xn, . . . , x1)) ≡ −〈 log(pn) 〉pn ,

(5.63)

which needs to be measured for an ensemble of time series of length n or
greater. Of interest is the entropy density in the limit of large times,
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Fig. 5.8 The entropy (full line) H[pn] of a time series of length n increases monotonically,

with the limiting slope (dashed line) h∞. For large n→∞ the entropy H[pn] ≈ E+h∞n,
with the excess entropy E given by the intercept of asymptote with the y-axis

h∞ = lim
n→∞

1

n
H[pn] , (5.64)

which exists for stationary dynamical processes with finite time horizons. The
entropy density is the mean number of bits per time step needed for encoding
the time series statistically.

Excess Entropy We define the “excess entropy” E as

E = lim
n→∞

(
H[pn] − nh∞

)
≥ 0 . (5.65)

The excess entropy is just the non-extensive part of the entropy, it is the
coefficient of the term ∝ n0 when expanding the entropy in powers of 1/n,

H[pn] = nh∞ + E +O(1/n), n → ∞ , (5.66)

compare Fig. 5.8. The excess entropy E is positive as long as H[pn] is concave
as a function of n (we leave the proof of this statement as an exercise to the
reader), which is the case for stationary dynamical processes. For practical
purposes one may approximate the excess entropy using

h∞ = lim
n→∞

hn, hn = H[pn+1] − H[pn] , (5.67)

since h∞ corresponds to the asymptotic slope of H[pn], compare Fig. 5.8.

• One may also use Eqs. (5.67) and (5.53) for rewriting the entropy density
hn in terms of an appropriately generalized conditional entropy.

• Using Eq. (5.66) we may rewrite the excess entropy as∑
n

[
H[pn]

n
− h∞

]
.

In this form the excess entropy is known as the “effective measure com-
plexity” (EMC) or “Grassberger entropy”.
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Excess Entropy and Predictability The excess entropy vanishes both
for a random and for an ordered system. For a random system

H[pn] = nH[pX ] ≡ nh∞ ,

where pX is the marginal probability. The excess entropy, Eq. (5.65) vanishes
consequently. For an example of a system with ordered states we consider the
dynamics

. . . 000000000000000 . . . , . . . 111111111111111 . . . ,

for a binary variable, occurring with probabilities α and 1 − α respectively.
This kind of dynamics is the natural output of logical AND or OR rules. The
joint probability distribution then has only two non-zero components,

p(0, . . . , 0) = α, p(1, . . . , 1) = 1− α, ∀n ,

all other p(xn, . . . , x1) vanish and

H[pn] ≡ −α log(α) − (1− α) log(1− α), ∀n .

The entropy density h∞ vanishes and the excess entropy E becomes H[pn];
it vanishes for α→ 0, 1, viz in the deterministic limit.

The excess entropy therefore fulfills the concaveness criteria illustrated
in Fig. 5.7, vanishing both in the absence of predictability (random states)
and for the case of strong predictability (i.e. for deterministic systems). The
excess entropy does however not vanish in above example for 0 < α < 1,
when two predictable states are superimposed statistically in an ensemble of
time series. Whether this behavior is compatible with our intuitive notion of
complexity is, to a certain extent, a matter of taste.

Discussion The excess entropy is a nice tool for time series analysis, satis-
fying several basic criteria for complexity measures, and there is a plethora of
routes for further developments, e.g. for systems showing structured dynam-
ical activity both in the time as well as in the spatial domain. The excess
entropy is however exceedingly difficult to evaluate numerically and its scope
of applications therefore limited to theoretical studies.

5.3.2 Algorithmic and Generative Complexity

We have discussed so far descriptive approaches using statistical methods for
the construction of complexity measures. One may, on the other hand, be
interested in modelling the generative process. The question is then: which
is the simplest model able to explain the observed data?



5.3 Complexity Measures 33

Individual Objects For the statistical analysis of a time series we have
been concerned with ensembles of time series, as generated by the identical
underlying dynamical system, and with the limit of infinitely long times. In
this section we will be dealing with individual objects composed of a finite
number of n symbols, like

0000000000000000000000, 0010000011101001011001 .

The question is then: which dynamical model can generate the given string of
symbols? One is interested, in particular, in strings of bits and in computer
codes capable of reproducing them.

Turing Machine The reference computer codes in theoretical informatics
is the set of instructions needed for a “Turing machine” to carry out a given
computation. The exact definition for a Turing machine is not of relevance
here, it is essentially a finite-state machine working on a set of instructions
called code. The Turing machine plays a central role in the theory of com-
putability, e.g. when one is interested in examining how hard it is to find the
solution to a given set of problems.

Algorithmic Complexity The notion of algorithmic complexity tries to
find an answer to the question of how hard it is to reproduce a given time
series in the absence of prior knowledge.

Algorithmic Complexity. The “algorithmic complexity” of a string of bits is the

length of the shortest program that prints the given string of bits and then halts.

The algorithmic complexity is also called “Kolmogorov complexity”. Note,
that the involved computer or Turing machine is supposed to start with a
blank memory, viz with no prior knowledge.

Algorithmic Complexity and Randomness Algorithmic complexity is a
very powerful concept for theoretical considerations in the context of optimal
computability. It has, however, two drawbacks, being not computable and
attributing maximal complexity to random sequences.

A random number generator can only be approximated by any finite state
machine like the Turing machine and would need an infinite code length to be
perfect. That is the reason why real-world codes for random number gener-
ators are producing only “pseudo random numbers”, with the degree of ran-
domness to be tested by various statistical measures. Algorithmic complexity
therefore conflicts with the common postulate for complexity measures to
vanish for random states, compare Fig. 5.7.

Deterministic Complexity There is a vast line of research trying to under-
stand the generative mechanism of complex behavior not algorithmically but
from the perspective of dynamical system theory, in particular for determin-
istic systems. The question is then: in the absence of noise, which are the
features needed to produce interesting and complex trajectories?
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Of interest are in this context the sensitivity to initial condition for systems
having a transition between chaotic and regular states in phase space, see
Chap. ??, the effect of bifurcations and non-trivial attractors like strange
attractors, see Chap. ??, and the consequences of feedback and tendencies
toward synchronization, see Chap. ??. This line of research is embedded in
the general quest of understanding the properties and the generative causes
of complex and adaptive dynamical systems.

Complexity and Emergence Intuitively, we attribute a high degree of
complexity to ever changing structure emerging from possibly simple under-
lying rules, an example being the forest fires burning their way through the
forest along self-organized fire fronts, compare Fig. ?? for an illustration. This
link between complexity and “emergence” is, however, not easy to mathema-
tize, as no precise measure for emergence has been proposed to date.

Weak and Strong Emergence On a final note one needs to mention that a
vigorous distinction is being made in philosophy between the concept of weak
emergence, which we treated here, and the scientifically irrelevant notion of
strong emergence. Properties of a complex system generated via weak emer-
gence result from the underlying microscopic laws, whereas strong emergence
leads to top-level properties which are strictly novel in the sense, that they
cannot, like magic, linked causally to the underlying microscopic laws of
nature.
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