
Chapter 1

Random Boolean Networks

Complex system theory deals with dynamical systems containing a very large
number of variables. The resulting dynamical behavior can be arbitrary com-
plex and sophisticated. It is therefore important to have well controlled bench-
marks, dynamical systems which can be investigated and understood in a
controlled way for large numbers of variables.

Networks of interacting binary variables, i.e. boolean networks, consti-
tute such canonical complex dynamical system. They allow the formulation
and investigation of important concepts like phase transition in the resulting
dynamical state. They are also recognized to be the starting points for the
modeling of gene expression and protein regulation networks; the fundamen-
tal networks at the basis of all life.

1.1 Introduction

Boolean Networks In this chapter, we describe the dynamics of a set of
N binary variables.

Boolean Variables. A boolean or binary variable has two possible values, typically 0

and 1.

The actual values chosen for the binary variable are irrelevant; ±1 is an
alternative popular choice. These elements interact with each other according
to some given interaction rules denoted as coupling functions.

Boolean Coupling Functions. A boolean function {0, 1}K → {0, 1} maps K boolean
variables onto a single one.

The dynamics of the system is considered to be discrete, t = 0, 1, 2, . . ..
The value of the variables at the next time step are determined by the choice
of boolean coupling functions.
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Fig. 1.1 Illustration of a boolean network with N = 4 sites. σ1(t + 1) is determined by

σ2(t), σ3(t) and σ4(t) (K = 3). The controlling elements of σ2 are σ1 and σ3 (K = 2).
The connectivity of σ3 and σ4 is K = 1

The Boolean Network. The set of boolean coupling functions interconnecting the N

boolean variables can be represented graphically by a directed network, the boolean
network.

In Fig. 1.1 a small boolean network is illustrated. Boolean networks at
first sight seem to be quite esoteric, devoid of the practical significance for
real-world phenomena. Why are they then studied so intensively?

Cell Differentiation in Terms of Stable Attractors The field of boolean
networks was given the first big boost by the seminal study of Kauffman in
the late 1960s. Kauffman casted the problem of gene expression in terms of
a gene regulation network and introduced the so-called N–K model in this
context. All cells of an animal contain the same genes and cell differentiation,
i.e. the fact that a skin cell differs from a muscle cell, is due to differences in
the gene activities in the respective cells. Kauffman proposed that different
stable attractors, viz cycles, in his random boolean gene expression network
correspond to different cells in the bodies of animals.

The notion is then that cell types correspond to different dynamical states
of a complex system, i.e. of the gene expression network. This proposal by
Kauffman has received on one side strong support from experimental studies.
In Sect. 4.5.2 we will discuss the case of the yeast cell division cycle, support-
ing the notion that gene regulation networks constitute the underpinnings of
life. Regarding the mechanisms of cell differentiation in multicellular organ-
isms, the situation is, on the other side, less clear. Cell types are mostly
determined by DNA methylation, which affects the respective gene expres-
sion on long time scales.

Boolean Networks are Everywhere Kauffman’s original work on gene
expression networks was soon generalized to a wide spectrum of applications,
such as, to give a few examples, the modeling of neural networks by random
boolean networks and of the “punctuated equilibrium” in long-term evolu-
tion; a concept that we will discuss in Chap. ??.

Dynamical systems theory (see Chap. ??) deals with dynamical systems
containing a relatively small number of variables. General dynamical systems
with large numbers of variables are very difficult to analyze and control. Ran-
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dom boolean networks can hence be considered, in a certain sense, as being
of prototypical importance in this field, as they provide well defined classes
of dynamical systems for which the thermodynamical limit N → ∞ can be
taken. They show chaotic as well as regular behavior, despite their appar-
ent simplicity, and many other typical phenomena of dynamical systems. In
the thermodynamic limit there can be phase transitions between chaotic and
regular regimes. These are the issues studied in this chapter.

N–K Networks There are several types of random boolean networks. The
most simple realization is the N–K model. It is made up of N boolean vari-
ables, each variable interacting exactly with K other randomly chosen vari-
ables. The respective coupling functions are also chosen randomly from the
set of all possible boolean functions mapping K boolean inputs onto one
boolean output.

There is no known realization of N–K models in nature. All real phys-
ical or biological problems have very specific couplings determined by the
structure and the physical and biological interactions of the system consid-
ered. The topology of the couplings is, however, often very complex and, in
many instances, completely unknown. It is then often a good starting point
to model the real-world system by a generic model, like the N–K model.

Binary Variables Modeling real-world systems by a collection of interact-
ing binary variables is often a simplification, as real-world variables are often
continuous. For the case of the gene expression network, one just keeps two
possible states for every single gene: active or inactive.

Thresholds, viz parameter regimes at which the dynamical behavior
changes qualitatively, are wide-spread in biological systems. Examples are
neurons, which fire or do not fire depending on the total strength of presy-
naptic activity. Similar thresholds occur in metabolic networks in the form of
activation potentials for the chemical reactions involved. Modeling real-world
systems based on threshold dynamics with binary variables is, then, a viable
first step towards an understanding.

1.2 Random Variables and Networks

Boolean networks have a rich variety of possible concrete model realizations
and we will discuss in the following the most important ones.

1.2.1 Boolean Variables and Graph Topologies

Boolean Variables and State Space We denote by
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σi ∈ {0, 1}, i = 1, 2, . . . , N

the N binary variables and by Σt the state of the system at time t,

Σt = {σ1(t), σ2(t), . . . , σN (t)} . (1.1)

Σt can be thought of as a vector pointing to one of the Ω = 2N edges of an
N -dimensional hypercube, where Ω is the number of possible configurations.
For numerical implementations and simulations it is useful to consider Σt as
the binary representation of an integer number 0 ≤ Σt < 2N .

Time Dependence Time is assumed to be discrete,

σi = σi(t), t = 1, 2, . . .

The value of a given boolean element σi at the next time step is determined
by the values of K controlling variables.

Controlling Elements. The controlling elements σj1(i), σj2(i), . . ., σjKi
(i) of a

boolean variable σi determine its time evolution by

σi(t+ 1) = fi(σj1(i)(t), σj2(i)(t), . . . , σjKi
(i)(t)) . (1.2)

Here fi is a boolean function associated with σi. The set of controlling ele-
ments might include σi itself. Some exemplary boolean functions are given
in Table 1.1.

Model Definition For a complete definition of the model we then need to
specify several parameters:

– The Connectivity: The first step is to select the connectivity Ki of each
element, i.e. the number of its controlling elements. With

Table 1.1 Examples of boolean functions of three arguments. (a) A particular random

function. (b) A canalizing function of the first argument. When σ1 = 0, the function value

is 1. If σ1 = 1, then the output can be either 0 or 1. (c) An additive function. The output
is 1 (active) if at least two inputs are active. (d) The generalized XOR, which is true when

the number of 1-bits is odd

f(σ1, σ2, σ3)

σ1 σ2 σ3 Random Canalizing Additive Gen. XOR

0 0 0 0 1 0 0

0 0 1 1 1 0 1
0 1 0 1 1 0 1
0 1 1 0 1 1 0

1 0 0 1 0 0 1

1 0 1 0 1 1 0
1 1 0 1 0 1 0

1 1 1 1 0 1 1
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Fig. 1.2 Translational invariant linkages for a completely ordered one-dimensional lattice

with connectivities K = 2, 4, 6

〈K〉 =
1

N

N∑
i=1

Ki

the average connectivity is defined. Here we will consider mostly the case in
which the connectivity is the same for all nodes: Ki = K, i = 1, 2, . . . , N .

– The Linkages: The second step is to select the specific set of controlling
elements

{
σj1(i), σj2(i), . . ., σjKi

(i)

}
on which the element σi depends. See

Fig. 1.1 for an illustration.
– The Evolution Rule: The third step is to choose the boolean function fi

determining the value of σi(t+ 1) from the values of the linkages
{
σj1(i)(t),

σj2(i)(t), . . . , σjKi
(i)(t)

}
.

The Geometry of the Network The way the linkages are assigned deter-
mines the topology of the network and networks can have highly diverse
topologies, see Chap. ??. It is custom to consider two special cases:

Lattice Assignment. The boolean variables σi are assigned to the nodes of a regular

lattice. The K controlling elements
{
σj1(i), σj2(i), . . ., σjK(i)

}
are then chosen in a

regular, translational invariant manner, see Fig. 1.2 for an illustration.

Uniform Assignment. In a uniform assignment the set of controlling elements are

randomly drawn from all N sites of the network. This is the case for the N–K
model, also called the Kauffman net . In terms of graph theory one also speaks of

an Erdös–Rényi random graph.

All intermediate cases are possible. Small-world networks, to give an exam-
ple, with regular short-distance links and random long-distance links are pop-
ular models in network theory, as discussed extensively in Chap. ??.

1.2.2 Coupling Functions

Number of Coupling Functions The coupling function

fi :
{
σj1(i), . . . , σjK(i)

}
→ σi

has 2K different arguments. To each argument value one can assign either 0
or 1. Thus there are a total of



6 1 Random Boolean Networks

Nf = 2(2K) = 22
K

=


2 K = 0
4 K = 1

16 K = 2
256 K = 3

(1.3)

possible coupling functions. In Table 1.1 we present several examples for the
case K = 3, out of the 22

3

= 256 distinct K = 3 boolean functions.

Classification of Coupling Functions For small numbers of connectivity
K one can completely classify all possible coupling functions:

– K = 0
There are only two constant functions, f = 1 and f = 0.

– K = 1
Apart from the two constant functions,
which one may denote together byA, there
are the identity 1 and the negation ¬σ,
which one can lump together into a class
B.

σ Class A Class B
0 0 1 0 1
1 0 1 1 0

– K = 2
There are four classes of functions f(σ1, σ2), compare Table 1.2, with each
class being invariant under the interchange 0↔ 1 in either the arguments
or the value of f :

A (constant functions),
B1 (fully canalizing functions for which one of the arguments determines
the output deterministically),
B2 (normal canalizing functions, see also Table 1.1),
C (non-canalizing functions, sometimes also denoted “reversible func-
tions”).

Types of Coupling Ensembles There are a range of different possible
choices for the probability distribution of coupling functions. The following
are some examples:

– Uniform Distribution: As introduced originally by Kauffman, the uniform
distribution specifies all possible coupling functions to occur with the same
probability 1/Nf .

Table 1.2 The 16 boolean functions for K = 2. For the definition of the various classes
see Sect. 1.2.2 and ?

σ1 σ2 Class A Class B1 Class B2 Class C
0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0

0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1
1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1

1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0
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– Magnetization Bias1: The probability of a coupling function to occur is
proportional to p if the outcome is 0 and proportional to 1 − p if the
outcome is 1.

– Forcing Functions: Forcing functions are also called “canalizing function”.
The function value is determined when one of its arguments, say m ∈
{1, . . . ,K}, is given a specific value, say σm = 0 (compare Table 1.1). The
function value is not specified if the forcing argument has another value,
here when σm = 1.

– Additive Functions: In order to simulate the additive properties of inter-
neural synaptic activities one can choose

σi(t+ 1) = Θ(f̃i(t)), f̃i(t) = −h+

N∑
j=1

wij σj(t)

where Θ(x) is the Heaviside step function, h the threshold for activating
the neuron and wij the synaptic weight connecting the pre-/ and post-
synaptic neurons j and i. The value of σi(t+1) depends only on a weighted
sum of its controlling elements at time t.

1.2.3 Dynamics

Model Realizations A given set of linkages and boolean functions {fi}
defines what one calls a realization of the model. The dynamics then follows
from Eq. (1.2). For the updating of all elements during one time step one has
several choices:

– Synchronous Update:All variables σi(t) are updated simultaneously.
– Serial Update (or asynchronous update):Only one variable is updated at

every step. This variable may be picked at random or by some predefined
ordering scheme.

The choice of updating does not affect thermodynamic properties, like the
phase diagram discussed in Sect. 1.3.2. The occurrence and the properties of
cycles and attractors, as discussed in Sect. 1.4, however, crucially depends on
the form of update.

Selection of the Model Realization There are several alternatives for
choosing the model realization during numerical simulations.

1 Magnetic moments often have only two possible directions (up or down in the language
of spin-1/2 particles). A compound is hence magnetic when more moments point into one

of the two possible directions, viz if the two directions are populated unequally.
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– The Quenched Model2: One specific realization of coupling functions is
selected at the beginning and kept throughout all time.

– The Annealed Model3: A new realization is randomly selected after each
time step. Then either the linkages or the coupling functions or both change
with every update, depending on the choice of the algorithm.

– The Genetic Algorithm: If the network is thought to approach a predefined
goal, one may employ a genetic algorithm in which the system slowly
modifies its realization with passing time.

Real-world systems are normally modeled by quenched systems with syn-
chronous updating. All interactions are then fixed for all times.

Cycles and Attractors Boolean dynamics correspond to a trajectory
within a finite state space of size Ω = 2N . Any trajectory generated by
a dynamical system with unmutable dynamical update rules, as for the
quenched model, will eventually lead to a cyclical behavior. No trajectory
can generate more than Ω distinct states in a row. Once a state is revisited,

Σt = Σt−T , T < Ω ,

part of the original trajectory is retraced and cyclic behavior follows. The
resulting cycle acts as an attractor for a set of initial conditions.

Cycles of length 1 are fixpoint attractors. The fixpoint condition σi(t+1) =
σi(t) (i = 1, . . . , N) is independent of the updating rules, viz synchronous vs.
asynchronous. The order of updating the individual σi is irrelevant when none
of them changes.

An Example In Fig. 1.3 a network with N = 3 and K = 2 is fully defined.
The time evolution of the 23 = 8 states Σt is given for synchronous updating.
One can observe one cycle of length 2 and two cycles of length 1 (fixpoints).

1.3 The Dynamics of Boolean Networks

We will now examine how we can characterize the dynamical state of boolean
networks in general and of N–K nets in particular. Two concepts will turn
out to be of central importance, the relation of robustness to the flow of
information and the characterization of the overall dynamical state, which
we will find to be either frozen, critical or chaotic.

2 An alloy made up of two or more substances is said to be “quenched” when it is cooled
so quickly that it remains stuck in a specific atomic configuration, which does not change

anymore with time.
3 A compound is said to be “annealed” when it has been kept long enough at elevated

temperatures such that the thermodynamic stable configuration has been achieved.
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Fig. 1.3 A boolean network with N = 3 sites and connectivities Ki ≡ 2. Left : Definition

of the network linkage and coupling functions. Right : The complete network dynamics
(From ?)

1.3.1 The Flow of Information Through the Network

The Response to Changes For random models the value of any given
variable σi, or its change with time, is, per se, meaningless. Of fundamental
importance, however, for quenched models is its response to changes. We may
either change the initial conditions, or some specific coupling function, and
examine its effect on the time evolution of the variable considered.

Robustness Biological systems need to be robust. A gene regulation net-
work, to give an example, for which even small damage routinely results in
the death of the cell, will be at an evolutionary disadvantage with respect to
a more robust gene expression set-up. Here we will examine the sensitivity of
the dynamics with regard to the initial conditions. A system is robust if two
similar initial conditions lead to similar long-time behavior.

The Hamming Distance and the Divergence of Orbits We consider
two different initial states,

Σ0 = {σ1(0), σ2(0), . . . , σN (0)}, Σ̃0 = {σ̃1(0), σ̃2(0), . . . , σ̃N (0)} .

Typically we are interested in the case when Σ0 and Σ̃0 are close, viz when
they differ in the values of only a few elements. A suitable measure for the
distance is the “Hamming distance” D(t) ∈ [0, N ],

D(t) =

N∑
i=1

(
σi(t)− σ̃i(t)

)2
, (1.4)

which is just the sum of elements that differ in Σ0 and Σ̃0. As an example
we consider
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Σ1 = {1, 0, 0, 1}, Σ2 = {0, 1, 1, 0}, Σ3 = {1, 0, 1, 1} .

We have 4 for the Hamming distance Σ1-Σ2 and 1 for the Hamming distance
Σ1-Σ3. If the system is robust, two close-by initial conditions will never move
far apart with time passingwith passing time, in terms of the Hamming dis-
tance.

The Normalized Overlap The normalized overlap a(t) ∈ [0, 1] between
two configurations is defined as

a(t) = 1− D(t)

N
= 1− 1

N

N∑
i=1

(
σ2
i (t)− 2σi(t)σ̃i(t) + σ̃2

i (t)
)

≈ 2

N

N∑
i=1

σi(t)σ̃i(t) , (1.5)

where we have assumed the absence of any magnetization bias, namely

1

N

∑
i

σ2
i ≈

1

2
≈ 1

N

∑
i

σ̃2
i ,

in the last step. The normalized overlap Eq. (1.5) is then like a normalized
scalar product between Σ and Σ̃. Two arbitrary states have, on the average,
a Hamming distance of N/2 and a normalized overlap a = 1−D/N of 1/2.

Information Loss/Retention for Long Time Scales The difference
between two initial states Σ and Σ̃ can also be interpreted as an information
for the system. One then has than two possible behaviors:

– Loss of Information: limt→∞ a(t)→ 1
a(t)→ 1 implies that two states are identical, or that they differ only by a
finite number of elements, in the thermodynamic limit. This can happen
when two states are attracted by the same cycle. All information about
the starting states is lost.

– Information Retention: limt→∞ a(t) = a∗ < 1
The system “remembers” that the two configurations were initially differ-
ent, with the difference measured by the respective Hamming distance.

The system is very robust when information is routinely lost. Robustness
depends on the value of a∗ when information is kept. If a∗ > 0 then two
trajectories retain a certain similarity for all time scales.

Percolation of Information for Short Time Scales Above we consid-
ered how information present in initial states evolves for very long times.
Alternatively one may ask, and this a typical question in dynamical system
theory, how information is processed for short times. We write

D(t) ≈ D(0) eλt , (1.6)
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where 0 < D(0) � N is the initial Hamming distance and where λ is called
the “Lyapunov exponent”, which we discussed in somewhat more detail in
Chap. ??.

The question is then whether two initially close trajectories, also called
“orbits” within dynamical systems theory, converge or diverge initially. One
may generally distinguish between three different types of behaviors or
phases:

– The Chaotic Phase: λ > 0
The Hamming distance grows exponentially, i.e. information is transferred
to an exponential large number of elements. Two initially close orbits soon
become very different. This behavior is found for large connectivities K
and is not suitable for real-world biological systems.

– The Frozen Phase: λ < 0
Two close trajectories typically converge, as they are attracted by the same
attractor. This behavior arises for small connectivities K. The system is
locally robust.

– The Critical Phase: λ = 0
An exponential time dependence, when present, dominates all other con-
tributions. There is no exponential time dependence when the Lyapunov
exponent vanishes and the Hamming distance then typically depends alge-
braically on time, D(t) ∝ tγ .

All three phases can be found in the N–K model when N →∞. We will
now study the N–K model and determine its phase diagram.

1.3.2 The Mean-Field Phase Diagram

A mean-field theory, also denoted “molecular-field theory” is a simple treat-
ment of a microscopic model by averaging the influence of many components,
lumping them together into a single mean- or molecular-field. Mean-field the-
ories are ubiquitous and embedded into the overall framework of the “Landau
Theory of Phase Transitions”, which we are going to discuss in Sect. ??.

Mean-Field Theory We consider two initial states

Σ0, Σ̃0, D(0) =

N∑
i=1

(
σi − σ̃i

)2
.

We remember that the Hamming distance D(t) measures the number of ele-
ments differing in Σt and Σ̃t.

For the N–K model, every boolean coupling function fi is as likely to
occur and every variable is, on the average, a controlling element for K other
variables. Therefore, the variables differing in Σt and Σ̃t affect on the aver-
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Fig. 1.4 The time evolution of the overlap between two states Σt and Σ̃t. The vertices

(given by the squares) can have values 0 or 1. Vertices with the same value in both states
Σt and Σ̃t are highlighted by a gray background. The values of vertices at the next time

step, t + 1, can only differ if the corresponding arguments are different. Therefore, the

vertex with gray background at time t + 1 must be identical in both states. The vertex
with the star can have different values in both states at time, t + 1, with a probability

2 p (1− p), where p/(1− p) are the probabilities of having vertices with 0/1, respectively

age KD(t) coupling functions, see Fig. 1.4 for an illustration. Every coupling
function changes with probability half of its value, in the absence of a mag-
netization bias. The number of elements different in Σt+1 and Σ̃t+1 , viz the
Hamming distance D(t+ 1) will then be

D(t+ 1) =
K

2
D(t), D(t) =

(
K

2

)t
D(0) = D(0) et ln(K/2) . (1.7)

The connectivity K then determines the phase of the N–K network:

– Chaotic K > 2
Two initially close orbits diverge, the number of different elements, i.e. the
relative Hamming distance grows exponentially with time t.

– Frozen (K < 2)
The two orbits approach each other exponentially. All initial information
contained D(0) is lost.

– Critical (Kc = 2)
The evolution of Σt relative to Σ̃t is driven by fluctuations. The power laws
typical for critical regimes cannot be deduced within mean-field theory,
which discards fluctuations.

The mean-field theory takes only average quantities into account. The evolu-
tion law D(t + 1) = (K/2)D(t) holds only on the average. Fluctuations, viz
the deviation of the evolution from the mean-field prediction, are however
of importance only close to a phase transition, i.e. close to the critical point
K = 2.

The mean-field approximation generally works well for lattice physical
systems in high spatial dimensions and fails in low dimensions. The Kauffman
network has no dimension per se, but the connectivity K plays an analogous
role.

Phase Transitions in Dynamical Systems and the Brain The notion
of a “phase transition” originally comes from physics, where it denotes the
transition between two or more different physical phases, like ice, water and
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gas, see Chap. ??, which are well characterized by their respective order
parameters.

The term phase transition therefore classically denotes a transition
between two stationary states. The phase transition discussed here involves
the characterization of the overall behavior of a dynamical system. They are
well defined phase transitions in the sense that 1 − a∗ plays the role of an
order parameter; its value uniquely characterizes the frozen phase and the
chaotic phase in the thermodynamic limit.

An interesting, completely open and unresolved question is then, whether
dynamical phase transitions play a role in the most complex dynamical sys-
tem known, the mammalian brain. It is tempting to speculate that the phe-
nomena of consciousness may result from a dynamical state characterized by
a yet unknown order parameter. Were this true, then this phenomena would
be “emergent” in the strict physical sense, as order parameters are rigorously
defined only in the thermodynamic limit.

Let us stress, however, that these considerations are very speculative at this
point. In Chap. ??, we will discuss a somewhat more down-to-earth approach
to cognitive systems theory in general and to aspects of the brain dynamics
in particular.

1.3.3 The Bifurcation Phase Diagram

In deriving Eq. (1.7) we assumed that the coupling functions fi of the system
acquire the values 0 and 1 with the same probability p = 1/2. We generalize
this approach and consider the case of a magnetic bias in which the coupling
functions are

fi =

{
0, with probability p
1, with probability 1− p .

For a given value of the bias p and connectivity K, there are critical values

Kc(p), pc(K) ,

such that for K < Kc (K > Kc) the system is in the frozen phase (chaotic
phase). When we consider a fixed connectivity and vary p, then pc(K) sepa-
rates the system into a chaotic phase and a frozen phase.

The Time Evolution of the Overlap We note that the overlap a(t) =
1 −D(t)/N between two states Σt and Σ̃t at time t is the probability that
two vertices have the same value both in Σt and in Σ̃t. The probability that
all arguments of the function fi will be the same for both configurations is
then

ρK =
[
a(t)

]K
. (1.8)
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Fig. 1.5 Solution of the self-consistency condition a∗ = 1 −
[
1− (a∗)K

]
/Kc, see

Eq. (1.11). Left : Graphical solution equating both sides. Right: Numerical result for a∗

for Kc = 3. The fixpoint a∗ = 1 becomes unstable for K > Kc = 3

As illustrated by Fig. 1.4, the values at the next time step differ with a prob-
ability 2p(1 − p), but only if the arguments of the coupling functions are
non-different. Together with the probability that at least one controlling ele-
ment has different values in Σt and Σ̃t, 1 − ρK , this gives the probability,
(1 − ρK)2p(1 − p), of values being different in the next time step. We then
have

a(t+ 1) = 1− (1− ρK) 2p(1− p) = 1− 1− [a(t)]K

Kc
, (1.9)

where Kc is given in terms of p as

Kc =
1

2p(1− p)
, p1,2c =

1

2
±
√

1

4
− 1

2K
. (1.10)

The fixpoint a∗ of Eq. (1.9) obeys

a∗ = 1− 1− [a∗]K

Kc
. (1.11)

This self-consistency condition for the normalized overlap can be solved
graphically or numerically by simple iterations, see Fig. 1.5.

Stability Analysis The trivial fixpoint

a∗ = 1

always constitutes a solution of Eq. (1.11). We examine its stability under the
time evolution equation (1.9) by considering a small deviation δat > 0 from
the fixpoint solution, at = a∗ − δat:

1− δat+1 = 1− 1− [1− δat]K

Kc
, δat+1 ≈

K δat
Kc

. (1.12)

The trivial fixpoint a∗ = 1 therefore becomes unstable for K/Kc > 1, viz

when K > Kc =
(
2p(1− p)

)−1
.
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Fig. 1.6 Phase diagram for the N–K model. The curve separating the chaotic phase from

the ordered (frozen) phase is Kc = [2p(1 − p)]−1. The insets are simulations for N = 50
networks with K = 3 and p = 0.60 (chaotic phase), p = 0.79 (on the critical line) and

p = 0.90 (frozen phase). The site index runs horizontally, the time vertically. Notice the
fluctuations for p = 0.79 (From ?)

Bifurcation Equation (1.11) has two solutions for K > Kc, a stable fixpoint
a∗ < 1 and the unstable solution a∗ = 1. One speaks of a bifurcation, which
is shown in Fig. 1.5. We note that

Kc

∣∣∣
p=1/2

= 2 ,

in agreement with our previous mean-field result, Eq. (1.7), and that

lim
K→∞

a∗ = lim
K→∞

(
1− 1− [a∗]K

Kc

)
= 1− 1

Kc
= 1− 2p(1− p) ,

since a∗ < 1 for K > Kc, compare Fig. 1.5. Notice that a∗ = 1/2 for p = 1/2
corresponds to the average normalized overlap for two completely unrelated
states in the absence of the magnetization bias, p = 1/2. Two initial similar
states then become completely uncorrelated for t→∞ in the limit of infinite
connectivity K.

Rigidity of the Kauffman Net We can connect the results for the phase
diagram of the N–K network illustrated in Fig. 1.6 with our discussion on
robustness, see Sect. 1.3.1.

– The Chaotic Phase: K > Kc

The infinite time normalized overlap a∗ is less than 1 even when two tra-
jectories Σt and Σ̃t start out very close to each other. a∗, however, always
remains above the value expected for two completely unrelated states.



16 1 Random Boolean Networks

0 100 200 300 400 500

t

0.007

0.008

0.009

0.010

D(t)/N

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p = 0.4

pc= 0.15

p = 0.05

1 10 100 1000

t

D(t)/N

p = 0.4

pc = 0.27

p = 0.1

10
−1

10
0

10
−2

1 10 100 1000

pc= 0.1464

Fig. 1.7 Normalized Hamming distance D(t)/N for a Kauffman net (left) and a square

lattice (right) with N = 10,000 variables, connectivity K = 4 and D(0) = 100, viz
D(0)/N = 0.01. Left : (top) Frozen phase (p = 0.05), critical (pc ' 0.1464) and chaotic

(p = 0.4) phases, plotted with a logarithmic scale; (bottom) Hamming distance for the

critical phase (p = pc) but in a non-logarithmic graph. Right : Frozen phase (p = 0.1),
critical (pc ' 0.27) and chaotic (p = 0.4) phases, plotted with a logarithmic scale. Note

that a∗ = limt→∞(1 − D(t)/N) < 1 in the frozen state of the lattice system, compare
Fig. 1.5 (From ?)

This is so as the two orbits enter two different attractors consecutively,
after which the Hamming distance remains constant, modulo small-scale
fluctuations that do not contribute in the thermodynamic limit N →∞.

– The Frozen Phase: K < Kc

The infinite time overlap a∗ is exactly one. All trajectories approach essen-
tially the same configuration independently of the starting point, apart
from fluctuations that vanish in the thermodynamic limit. The system is
said to “order”.

Lattice Versus Random Networks The complete loss of information in
the ordered phase observed for the Kauffman net does not occur for lattice
networks, for which a∗ < 1 for any K > 0. This behavior of lattice systems
is born out by the results of numerical simulations presented in Fig. 1.7. The
finite range of the linkages in lattice systems allows them to store information
about the initial data in spatially finite proportions of the system, specific
to the initial state. For the Kauffman graph every region of the network is
equally close to any other and local storage of information is impossible.

Percolation Transition in Lattice Networks For lattice boolean net-
works the frozen and chaotic phases cannot be distinguished by examining
the value of the long-term normalized overlap a∗, as it is always smaller than
unity. The lattice topology, however, allows for a connection with percolation
theory. One considers a finite system, e.g. a 100 × 100 square lattice, and
two states Σ0 and Σ̃0 that differ only along one edge. If the damage, viz
the difference in between Σt and Σ̃t spreads for long times to the opposite
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edge, then the system is said to be percolating and in the chaotic phase. If
the damage never reaches the opposite edge, then the system is in the frozen
phase. Numerical simulations indicate, e.g. a critical pc ' 0.298 for the two-
dimensional square lattice with connectivity K = 4, compare Fig. 1.7.

Numerical Simulations The results of the mean-field solution for the
Kauffman net are confirmed by numerical solutions of finite-size networks.
In Fig. 1.7 the normalized Hamming distance, D(t)/N , is plotted for both
Kauffman graphs and a two-dimensional squared lattice, both containing
N = 10,000 elements and connectivity K = 4.

For both cases results are shown for parameters corresponding to the frozen
phase and to the chaotic phase, in addition to a parameter close to the critical
line. Note that 1 − a∗ = D(t)/N → 0 in the frozen phase for the random
Kauffman network, but not for the lattice system.

1.3.4 Scale-Free Boolean Networks

The Kauffman model is a reference model which can be generalized in various
ways, e.g. by considering small-world or scale-free networks.

Scale-Free Connectivity Distributions Scale-free connectivity distribu-
tions

P (K) =
1

ζ(γ)
K−γ , ζ(γ) =

∞∑
K=1

K−γ , γ > 1 (1.13)

abound in real-world networks, as discussed in Chap. ??. Here P (K) denotes
the probability to draw a coupling function fi(·) having Z arguments. The
distribution Eq. (1.13) is normalizable for γ > 1.

The average connectivity 〈K〉 is

〈K〉 =

∞∑
K=1

KP(K) =


∞ if 1 < γ ≤ 2

ζ(γ−1)
ζ(γ) <∞ if γ > 2

, (1.14)

where ζ(γ) is the Riemann zeta function.

Annealed Approximation We consider again two states Σt and Σ̃t and
the normalized overlap

a(t) = 1−D(t)/N ,

which is identical to the probability that two vertices in Σ and Σ̃ have the
same value. In Sect. 1.3.3 we derived, for a magnetization bias p,

a(t+ 1) = 1− (1− ρK) 2p(1− p) (1.15)
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for the time-evolution of a(t), where

ρK = [a(t)]
K →

∞∑
K=1

[a(t)]
K
P (K) (1.16)

is the average probability that the K = 1, 2, . . . controlling elements of the
coupling function fi() are all identical. In Eq. (1.16) we have generalized
Eq. (1.8) to a non-constant connectivity distribution P (K). We then find

a(t+ 1) = 1− 2p(1− p)

{
1−

∞∑
K=1

aK(t)P (K)

}
≡ F (a(t)) , (1.17)

compare Eq. (1.9). Effectively we have used here an annealed model, due to
the statistical averaging in Eq. (1.16).

Fixpoints Within the Annealed Approximation In the limit t → ∞,
Eq. (1.17) becomes the self-consistency equation

a∗ = F (a∗) ,

for the fixpoint a∗, where F (a) is defined as the right-hand-side of Eq. (1.17).
Again, a∗ = 1 is always a fixpoint of Eq. (1.17), since

∑
K P (K) = 1 per

definition.

Stability of the Trivial Fixpoint We repeat the stability analysis of the
trivial fixpoint a∗ = 1 of Sect. 1.3.3 and assume a small deviation δa > 0
from a∗:

a∗ − δa = F (a∗ − δa) = F (a∗)− F ′(a∗)δa, δa = F ′(a∗)δa .

The fixpoint a∗ becomes unstable if F ′(a∗) > 1. We find for a∗ = 1

1 = lim
a→1−

dF (a)

da
= 2p(1− p)

∞∑
k=1

KP(K)

= 2p(1− p) 〈K〉 . (1.18)

For lima→1− dF (a)/da < 1 the fixpoint a∗ = 1 is stable, otherwise it is
unstable. The phase transition is then given by

2p(1− p)〈K〉 = 1 . (1.19)

For the classical N–K model all elements have the same connectivity, Ki =
〈K〉 = K, and Eq. (1.19) reduces to Eq. (1.12).

The Frozen and Chaotic Phases for the Scale-Free Model For 1 <
γ ≤ 2 the average connectivity is infinite, see Eq. (1.14). F ′(1) = 2p(1 − p)
〈K〉 is then always larger than unity and a∗ = 1 unstable, as illustrated in
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Fig. 1.8 Phase diagram for a scale-free boolean network with connectivity distribution

∝ K−γ , as given by (1.19). The average connectivity diverges for γ < 2 and the network
is chaotic for all p (From ?)

Fig. 1.8. Equation (1.17) then has a stable fixpoint a∗ 6= 1; the system is in
the chaotic phase for all p ∈]0, 1[.

For γ >2 the first moment of the connectivity distribution P (K) is finite
and the phase diagram is identical to that of the N–K model shown in
Fig. 1.6, with K replaced by ζ(γc−1)/ζ(γc). The phase diagram in γ–p space
is presented in Fig. 1.8. One finds that γc ∈ [2, 2.5] for any value of p. There
is no chaotic scale-free network for γ > 2.5. It is interesting to note that
γ∈ [2, 3] for many real-world scale-free networks.

1.4 Cycles and Attractors

We have emphasized so far the general properties of boolean networks, such
as the phase diagram. We now turn to a more detailed inspection of the
dynamics, particulary regarding the structure of the attractors.

1.4.1 Quenched Boolean Dynamics

Self-Retracting Orbits From now on we consider quenched systems for
which the coupling functions fi(σi1 , . . . , σiK ) are fixed for all times. Any
orbit eventually partly retraces itself, since the state space Ω = 2N is finite.
The long-term trajectory is therefore cyclic.
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Fig. 1.9 Cycles and linkages. Left : Sketch of the state space where every bold point stands

for a state Σt = {σ1, . . . , σN}. The state space decomposes into distinct attractor basins
for each cycle attractor or fixpoint attractor. Right : Linkage loops for an N = 20 model

with K = 1. The controlling elements are listed in the center column. Each arrow points

from the controlling element toward the direct descendant. There are three modules of
uncoupled variables (From ?)

Attractors. An attractor A0 of a discrete dynamical system is a region {Σt} ⊂ Ω

in phase space that maps completely onto itself under the time evolution At+1 =

At ≡ A0.

Attractors are typically cycles

Σ(1) → Σ(2) → . . . → Σ(1) ,

see Figs. 1.3 and 1.9 for some examples. Fixed points are cycles of length 1.

The Attraction Basin. The attraction basin B of an attractor A0 is the set {Σt} ⊂ Ω
for which there is a time T <∞ such that ΣT ∈ A0.

The probability to end up in a given cycle is directly proportional, for
randomly drawn initial conditions, to the size of its basin of attraction. The
three-site network illustrated in Fig. 1.3 is dominated by the fixpoint {1, 1, 1},
which is reached with probability 5/8 for random initial starting states.

Attractors are Everywhere Attractors and fixpoints are generic features
of dynamical systems and are very important for their characterization, as
they dominate the time evolution in state space within their respective basins
of attraction. Random boolean networks allow for very detailed studies of the
structure of attractors and of the connection to network topology. Of special
interest in this context is how various properties of the attractors, like the
cycle length and the size of the attractor basins, relate to the thermodynamic
differences between the frozen phase and the chaotic phase. These are the
issues that we shall now discuss.
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Linkage Loops, Ancestors and Descendants Every variable σi can
appear as an argument in the coupling functions for other elements; it is
said to act as a controlling element. The collections of all such linkages can
be represented graphically by a directed graph, as illustrated in Figs. 1.1, 1.3
and 1.9, with the vertices representing the individual binary variables. Any
given element σi can then influence a large number of different states during
the continued time evolution.

Ancestors and Descendants. The elements a vertex affects consecutively via the

coupling functions are called its descendants. Going backwards in time one find
ancestors for each element.

In the 20-site network illustrated in Fig. 1.9 the descendants of σ11 are σ11,
σ12 and σ14.

When an element is its own descendant (and ancestor) it is said to be part
of a “linkage loop”. Different linkage loops can overlap, as is the case for the
linkage loops

σ1 → σ2 → σ3 → σ4 → σ1, σ1 → σ2 → σ3 → σ1

shown in Fig. 1.1. Linkage loops are disjoint for K = 1, compare Fig. 1.9.

Modules and Time Evolution The set of ancestors and descendants
determines the overall dynamical dependencies.

Module. The collection of all ancestors and descendants of a given element σi is

called the module (or component) to which σi belongs.

If we go through all variables σi, i = 1, . . . , N we find all modules, with
every element belonging to one and only one specific module. Otherwise
stated, disjoint modules correspond to disjoint subgraphs, the set of all mod-
ules constitute the full linkage graph. The time evolution is block-diagonal
in terms of modules; σi(t) is independent of all variables not belonging to its
own module, for all times t.

In lattice networks the clustering coefficient (see Chap. ??) is large and
closed linkage loops occur frequently. For big lattice systems with a small
mean linkage K we expect far away spatial regions to evolve independently,
due the lack of long-range connections.

Relevant Nodes and Dynamic Core Taking a look at dynamics of the
20-site model illustrated in Fig. 1.9, we notice that, e.g., the elements σ12 and
σ14 just follow the dynamics of σ11, they are “enslaved” by σ11. These two
elements do not control any other element and one could just delete them
from the system without qualitative changes to the overall dynamics.

Relevant Nodes. A node is termed relevant if its state is not constant and if it

controls at least one other relevant element (eventually itself).

An element is constant if it evolves, independently of the initial conditions,
always to the same state and not constant otherwise. The set of relevant
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nodes, the dynamic core, controls the overall dynamics. The dynamics of all
other nodes can be disregarded without changing the attractor structure.
The node σ13 of the 20-site network illustrated in Fig. 1.9 is relevant if the
boolean function connecting it to itself is either the identity or the negation.

The concept of a dynamic core is of great importance for practical appli-
cations. Gene expression networks may be composed of thousands of nodes,
but contain generally a relatively small dynamic core controlling the over-
all network dynamics. This is the case, e.g., for the gene regulation network
controlling the yeast cell cycle discussed in Sect. 1.5.2.

Lattice Nets versus Kauffman Nets For lattice systems the linkages are
short-ranged and whenever a given element σj acts as a controlling element
for another element σi there is a high probability that the reverse is also true,
viz that σi is an argument of fj .

The linkages are generally non-reciprocal for the Kauffman net; the prob-
ability for reciprocality is just K/N and vanishes in the thermodynamic limit
for finite K. The number of disjoint modules in a random network therefore
grows more slowly than the system size. For lattice systems, on the other
hand, the number of modules is proportional to the size of the system. The
differences between lattice and Kauffman networks translate to different cycle
structures, as every periodic orbit for the full system is constructed out of
the individual attractors of all modules present in the network considered.

1.4.2 The K= 1 Kauffman Network

We start our discussion of the cycle structure of Kauffman nets with the case
K = 1, which can be solved exactly. The maximal length for a linkage loop
lmax is on the average of the order of

lmax ∼ N1/2 . (1.20)

The linkage loops determine the cycle structure together with the choice of
the coupling ensemble. As an example we discuss the case of an N = 3 linkage
loop.

The Three-site Linkage Loop with Identities For K = 1 there are
only two non-constant coupling functions, i.e. the identity I and the negation
¬. We start by considering the case of all the coupling functions being the
identity:

ABC → CAB → BCA→ ABC → . . . ,

where we have denoted by A,B,C the values of the binary variables σi,
i = 1, 2, 3. There are two cycles of length 1, in which all elements are identical.
When the three elements are not identical, the cycle length is 3.The complete
dynamics is then, as illustrated in Fig. 1.10,
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Fig. 1.10 An example of a K = 1 linkage loop with N = 3 sites and identities as Boolean

coupling functions

000 → 000
111 → 111

100 → 010 → 001→ 100
011 → 101 → 110→ 011

Three-Site Linkage Loops with Negations Let us consider now the case
that all three coupling functions are negations:

ABC → C̄ĀB̄ → BCA→ ĀB̄C̄ → . . . Ā = ¬A, etc. .

The cycle length is 2 if all elements are identical

000 → 111 → 000

and of length 6 if they are not.

100→ 101 → 001 → 011 → 010→ 110 → 100 .

The complete state space Ω = 23 = 8 decomposes into two cycles, one of
length 6 and one of length 2.

Three-Site Linkage Loops with a Constant Function Let us see what
happens if any of the coupling functions is a constant function. For illustration
purposes we consider the case of two constant functions 0 and 1 and the
identity:

ABC → 0A1→ 001→ 001 . (1.21)

Generally it holds that the cycle length is 1 if any of the coupling functions
is an identity and that there is then only a single fixpoint attractor. Equa-
tion (1.21) holds for all A,B,C ∈ {0, 1}; the basin of attraction for 001 is
therefore the whole state space, and 001 is a global attractor.

The Kauffman net can contain very large linkage loops for K = 1, see
Eq. (1.20), but then the probability that a given linkage loop contains at least
one constant function is also very high. The average cycle length therefore
remains short for the K = 1 Kauffman net.

Loops and Attractors The attractors are made up of the set of linkage
loops. As an example we consider a five-site network with two linkage loops,

A→I B →I C →I A, D →I E →I D ,

with all coupling functions being the identity I. The states
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00000, 00011, 11100, 11111

are fixpoints in phase space Σ = ABCDE . Examples of cyclic attractors of
length 3 and 6 are

10000→ 01000→ 00100→ 10000

and

10010→ 01001→ 00110→ 10001→ 01010→ 00101→ 10010 .

In general, the length of an attractor is given by the least common multiple of
the periods of the constituent loops. This relation holds for K = 1 Boolean
networks, for general K the attractors are composed of the cycles of the
constituent set of modules.

Critical K = 1 Boolean networks When the coupling ensemble is
selected uniformly, compare Sect. 1.2.2, the K = 1 network is in the frozen
state. If we do however restrict our coupling ensemble to the identity I and to
the negation ¬, the value of one node is just copied or inverted to exactly one
other node. There is no loss of information anymore, when disregarding the
two constant K = 1 coupling functions (see Sect. 1.2.2). The information is
not multiplied either, being transmitted to exactly one and not more nodes.
The network is hence critical, as pointed out in Sect. 1.3.1.

1.4.3 The K= 2 Kauffman Network

The K = 2 Kauffman net is critical, as discussed in Sects. 1.3.1 and 1.3.2.
When physical systems undergo a (second-order) phase transition, power laws
are expected right at the point of transition for many response functions; see
the discussion in Chap. ??. It is therefore natural to expect the same for
critical dynamical systems, such as a random boolean network.

This expectation was indeed initially born out of a series of mostly numeri-
cal investigations, which indicated that both the typical cycle lengths, as well
as the mean number of different attractors, would grow algebraically with N ,
namely like

√
N . It was therefore tempting to relate many of the power laws

seen in natural organisms to the behavior of critical random boolean net-
works.

Undersampling of the State Space The problem to determine the num-
ber and the length of cycles is, however, numerically very difficult. In order to
extract power laws one has to simulate systems with large N . The state space
Ω = 2N , however, grows exponentially, so that an exhaustive enumeration of
all cycles is impossible. One has therefore to resort to a weighted sampling of
the state space for any given network realization and to extrapolate from the
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small fraction of states sampled to the full state space. This method yielded
the
√
N dependence referred to above.

The weighted sampling is, however, not without problems; it might in
principle undersample the state space. The number of cycles found in the
average state space might not be representative for the overall number of
cycles, as there might be small fractions of state space with very high number
of attractors dominating the total number of attractors.

This is indeed the case. One can prove rigorously that the number of
attractors grows faster than any power for the K = 2 Kauffman net. One
might still argue, however, that for biological applications the result for the
“average state space” is relevant, as biological systems are not too big anyway.
The hormone regulation network of mammals contains of the order of 100
elements, the gene regulation network of the order of 20,000 elements.

Observational Scale Invariance Experimental observations of a dynam-
ical system are typically equivalent to a random sampling of its phase space.
Experimental results will hence reflect the properties of the attractors with
large basins of attractions, which dominate phase space. For the case of the
K = 2 Kauffman net an external observer would hence find scale invariance.
The response of the system to a random perturbation will also involve the
dominating attractors and may hence be considered as “effectively scale free”.

1.4.4 The K=N Kauffman Network

Mean-field theory holds for the fully connected network K = N and we can
evaluate the average number and length of cycles using probability argu-
ments.

The Random Walk Through Configuration Space We consider an
orbit starting from an arbitrary configuration Σ0 at time t = 0. The time
evolution generates a series of states

Σ0, Σ1, Σ2, . . .

through the configuration space of size Ω = 2N . We consider all Σt to be
uncorrelated, viz we consider a random walk. This assumption holds due to
the large connectivity K = N .

Closing the Random Walk The walk through configuration space con-
tinues until we hit a previously visited point, see Fig. 1.11. We define by

– qt: the probability that the trajectory remains unclosed after t steps;
– Pt: the probability of terminating the excursion exactly at time t.

If the trajectory is still open at time t, we have already visited t + 1 differ-
ent sites (including the sites Σ0 and Σt). Therefore, there are t + 1 ways of
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Fig. 1.11 A random walk in configuration space. The relative probability of closing the

loop at time t, ρt = (t+ 1)/Ω, is the probability that Σt+1 ≡ Σt′ , with a certain t′ ∈ [0, t]

terminating the walk at the next time step. The relative probability of termi-
nation is then ρt = (t+ 1)/Ω and the overall probability Pt+1 to terminate
the random walk at time t+ 1 is

Pt+1 = ρt qt =
t+ 1

Ω
qt .

The probability of still having an open trajectory after t+ 1 steps is

qt+1 = qt(1− ρt) = qt

(
1− t+ 1

Ω

)
= q0

t+1∏
i=1

(
1− i

Ω

)
, q0 = 1 .

The phase space Ω = 2N diverges in the thermodynamic limit N → ∞ and
the approximation

qt =

t∏
i=1

(
1− i

Ω

)
≈

t∏
i=1

e−i/Ω = e−
∑

i i/Ω = e−t(t+1)/(2Ω) (1.22)

becomes exact in this limit. For large times t we have t(t+1)/(2Ω) ≈ t2/(2Ω)
in Eq. (1.22). The probability

Ω∑
t=1

Pt '
∫ ∞
0

dt
t

Ω
e−t

2/(2Ω) = 1

for the random walk to close at all is unity.

Cycle Length Distribution The average number 〈Nc(L)〉 of cycles of
length L is

〈Nc(L)〉 =
qt=L−1
Ω

Ω

L
=

exp[−L2/(2Ω)]

L
, (1.23)

where we used Eq. (1.22). 〈· · · 〉 denotes an ensemble average over realizations.
In deriving Eq. (1.23) we used the following considerations:

(i) The probability that Σt+1 is identical to Σ0 is 1/Ω.
(ii) There are Ω possible starting points (factor Ω).
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(iii) Factor 1/L corrects for the overcounting of cycles when considering the L
possible starting sites of the L-cycle.

Average Number of Cycles We are interested in the mean number N̄c of
cycles,

N̄c =

N∑
L=1

〈Nc(L)〉 '
∫ ∞
1

dL 〈Nc(L)〉 . (1.24)

When going from the sum
∑
L to the integral

∫
dL in Eq. (1.24) we neglected

terms of order unity. We find

N̄c =

∫ ∞
1

dL
exp[−L2/(2Ω)]

L
=

∫ 1

1/
√
2Ω

du
e−u

2

u︸ ︷︷ ︸
≡I1

+

∫ ∞
1

du
e−u

2

u︸ ︷︷ ︸
≡I2

,

where we rescaled the variable by u = L/
√

2Ω. For the separation
∫∞
1/
√
2Ω

=∫ c
1/
√
2Ω

+
∫∞
c

of the integral above we used c = 1 for simplicity; any other

finite value for c would do also the job.
The second integral, I2, does not diverge as Ω →∞. For I1 we have

I1 =

∫ 1

1/
√
2Ω

du
e−u

2

u
=

∫ 1

1/
√
2Ω

du
1

u

(
1− u2 +

1

2
u4 + . . .

)
≈ ln(

√
2Ω) , (1.25)

since all further terms ∝
∫ 1

1/
√
2Ω

duun−1 < ∞ for n = 2, 4, . . . and Ω → ∞.

The average number of cycles is then

N̄c = ln(
√

2N ) + O(1) =
N ln 2

2
+ O(1) (1.26)

for the N = K Kauffman net in thermodynamic limit N →∞.

Mean Cycle Length The average length L̄ of a random cycle is

L̄ =
1

N̄c

∞∑
L=1

L 〈Nc(L)〉 ≈ 1

N̄c

∫ ∞
1

dLL
exp[−L2/(2Ω)]

L

=
1

N̄c

∫ ∞
1

dL e−L
2/(2Ω) =

√
2Ω

N̄c

∫ ∞
1/
√
2Ω

du e−u
2

(1.27)

after rescaling with u = L/
√

2Ω and using Eq. (1.23). The last integral on
the right-hand-side of Eq. (1.27) converges for Ω → ∞ and the mean cycle
length L̄ consequently scales as

L̄ ∼ Ω1/2/N = 2N/2/N (1.28)
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for the K = N Kauffman net, when using Eq. (1.24), N̄c ∼ N .

1.5 Applications

1.5.1 Living at the Edge of Chaos

Gene Expression Networks and Cell Differentiation Kauffman intro-
duced the N–K model in the late 1960s for the purpose of modeling the
dynamics and time evolution of networks of interacting genes, i.e. the gene
expression network. In this model an active gene might influence the expres-
sion of any other gene, e.g. when the protein transcripted from the first gene
influences the expression of the second gene.

The gene expression network of real-world cells is not random. The web
of linkages and connectivities among the genes in a living organism is, how-
ever, very intricate, and to model the gene–gene interactions as randomly
linked is a good 0-th order approximation. One might then expect to gain a
generic insight into the properties of gene expression networks; insights that
are independent of the particular set of linkages and connectivities realized
in any particular living cell.

Dynamical Cell Differentiation Whether random or not, the gene
expression network needs to result in a stable dynamics in order for the
cell to keep functioning. Humans have only a few hundreds of different cell
types in their bodies. Considering the fact that every single cell contains the
identical complete genetic material, in 1969 Kauffman proposed an, at that
time revolutionary, suggestion that every cell type corresponds to a distinct
dynamical state of the gene expression network. It is natural to assume that
these states correspond to attractors, viz in general to cycles. The average
length L̄ of a cycle in a N–K Kauffman net is

L̄ ∼ 2αN

in the chaotic phase, e.g. for N = K where α = 1/2, see Eq. (1.28), The
mean cycle length L̄ is exponentially large; consider that N ≈ 20,000 for the
human genome. A single cell would take the universe’s lifetime to complete a
single cycle, which is an unlikely setting. It then follows that gene expression
networks of living organisms cannot be operational in the chaotic phase.

Living at the Edge of Chaos If the gene expression network cannot oper-
ate in the chaotic phase there are but two possibilities left: the frozen phase
or the critical point. The average cycle length is short in the frozen phase,
see Sect. 1.4.2, and the dynamics stable. The system is consequently very
resistant to damage of the linkages.
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But what about Darwinian evolution? Is too much stability good for the
adaptability of cells in a changing environment? Kauffman suggested that
gene expression networks operate at the edge of chaos, an expression that
has become legendary. By this he meant that networks close to criticality
may benefit from the stability properties of the close-by frozen phase and at
the same time exhibit enough sensitivity to changes in the network structure
so that Darwinian adaption remains possible.

But how can a system reach criticality by itself? For the N–K network
there is no extended critical phase, only a single critical point K = 2. In
Chap. ?? we will discuss mechanisms that allow certain adaptive systems
to evolve their own internal parameters autonomously in such a way that
they approach the critical point. This phenomenon is called “self-organized
criticality”.

One could then assume that Darwinian evolution trims the gene expression
networks towards criticality: Cells in the chaotic phase are unstable and die;
cells deep in the frozen phase cannot adapt to environmental changes and
are selected out in the course of time.

1.5.2 The Yeast Cell Cycle

The Cell Division Process Cells have two tasks: to survive and to multi-
ply. When a living cell grows too big, a cell division process starts. The cell
cycle has been studied intensively for the budding yeast. In the course of the
division process the cell goes through a distinct set of states

G1 → S → G2 →M → G1 ,

with G1 being the “ground state” in physics slang, viz the normal cell state
and the chromosome division takes place during the M phase. These states
are characterized by distinct gene activities, i.e. by the kinds of proteins active
in the cell. All eukaryote cells have similar cell division cycles.

The Yeast Gene Expression Network From the ≈800 genes involved
only 11–13 core genes are actually regulating the part of the gene expres-
sion network responsible for the division process; all other genes are more or
less just descendants of the core genes. The cell dynamics contains certain
checkpoints, where the cell division process can be stopped if something were
to go wrong. When eliminating the checkpoints a core network with only 11
elements remains. This network is shown in Fig. 1.12.

Boolean Dynamics The full dynamical dependencies are not yet known
for the yeast gene expression network. The simplest model is to assume
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Fig. 1.12 The N = 11 core network responsible for the yeast cell cycle. Acronyms denote
protein names, solid arrows excitatory connections and dashed arrows inhibitory connec-

tions. Cln3 is inactive in the resting state G1 and becomes active when the cell reaches a

certain size (top), initiating the cell division process (compare ?)

σi(t+ 1) =

{
1 if ai(t) > 0
0 if ai(t) ≤ 0

, ai(t) =
∑
j

wijσj(t) , (1.29)

i.e. a boolean dynamics4 for the binary variables σi(t) = 0, 1 representing
the activation/deactivation of protein i, with couplings wij = ± 1 for an
excitatory/inhibitory functional relation.

Fixpoints The 11-site network has 7 attractors, all cycles of length 1, viz
fixpoints. The dominating fixpoint has an attractor basin of 1,764 states,
representing about 72 % of the state space Ω = 211 = 2,048. Remarkably,
the protein activation pattern of the dominant fixpoint corresponds exactly
to that of the experimentally determined G1 ground state of the living yeast
cell.

The Cell Division Cycle In the G1 ground state the protein Cln3 is inac-
tive. When the cell reaches a certain size it becomes expressed, i.e. it becomes
active. For the network model one then just starts the dynamics by setting

σCln3 → 1, at t = 0

in the G1 state. The ensuing simple boolean dynamics, induced by Eq. (1.29),
is depicted in Fig. 1.13.

4 Genes are boolean variables in the sense that they are either expressed or not. The
quantitative amount of proteins produced by a given active gene is regulated via a separate

mechanism involving microRNA, small RNA snippets.
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Fig. 1.13 The yeast cell cycle as an attractor trajectory of the gene expression network.

Shown are the 1,764 states (green dots, out of the 211 = 2,048 states in phase space Ω)

making up the basin of attraction of the biologically stable G1 state (at the bottom).
After starting with the excited G1 normal state (the first state in the biological pathway

represented by blue arrows), compare Fig. 1.12, the boolean dynamics runs through the

known intermediate states (blue arrows) until the G1 states attractor is again reached,
representing the two daughter cells (From ?)

The remarkable result is that the system follows an attractor pathway that
runs through all experimentally known intermediate cell states, reaching the
ground state G1 in 12 steps.

Comparison with Random Networks The properties of the boolean net-
work depicted in Fig. 1.12 can be compared with those of a random boolean
network. A random network of the same size and average connectivity would
have more attractors with correspondingly smaller basins of attraction. Living
cells clearly need a robust protein network to survive in harsh environments.

Nevertheless, the yeast protein network shows more or less the same sus-
ceptibility to damage as a random network. The core yeast protein network
has an average connectivity of 〈K〉 = 27/11 ' 2.46. The core network has
only N = 11 sites, a number far too small to allow comparison with the prop-
erties of N–K networks in the thermodynamic limit N → ∞. Nevertheless,
an average connectivity of 2.46 is remarkably close to K = 2, i.e. the critical
connectivity for N–K networks.

Life as an Adaptive Network Living beings are complex and adaptive
dynamical systems; a subject that we will further dwell on in Chap. ??. The
here discussed preliminary results on the yeast gene expression network indi-
cate that this statement is not just an abstract notion. Adaptive regulative
networks constitute the core of all living.
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Fig. 1.14 Illustration of ensemble (a) and time (b) encoding. Left : All receptor neurons

corresponding to the same class of input signals are combined, as occurs in the nose for
different odors. Right : The primary input signals are mixed together by a random neural

network close to criticality and the relative weights are time encoded by the output signal

1.5.3 Application to Neural Networks

Time Encoding by Random Neural Networks There is some debate in
neuroscience whether, and to which extent, time encoding is used in neural
processing.

– Ensemble Encoding: Ensemble encoding is present when the activity of a
sensory input is transmitted via the firing of certain ensembles of neurons.
Every sensory input, e.g. every different smell sensed by the nose, has its
respective neural ensemble.

– Time Encoding: Time encoding is present if the same neurons transmit
more than one piece of sensory information by changing their respective
firing patterns.

Cyclic attractors in a dynamical ensemble are an obvious tool to generate
time encoded information. For random boolean networks as well as for ran-
dom neural networks appropriate initial conditions, corresponding to certain
activity patterns of the primary sensory organs, will settle into a cycle, as
discussed in Sect. 1.4. The random network may then be used to encode ini-
tial firing patterns by the time sequence of neural activities resulting from
the firing patterns of the corresponding limiting cycle, see Fig. 1.14.

Critical Sensory Processing The processing of incoming information is
qualitatively different in the various phases of the N–K model, as discussed
in Sect. 1.3.1.

The chaotic phase is unsuitable for information processing, any input
results in an unbounded response and saturation. The response in the frozen
phase is strictly proportional to the input and is therefore well behaved, but
also relatively uninteresting. The critical state, on the other hand, has the
possibility of nonlinear signal amplification.

Sensory organs in animals can routinely process physical stimuli, such as
light, sound, pressure or odorant concentrations, which vary by many orders
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Fig. 1.15 The primary response of sensory receptors can be enhanced by many orders of

magnitude using the non-linear amplification properties of a random neural network close
to criticality

of magnitude in intensity. The primary sensory cells, e.g. the light receptors
in the retina, have, however a linear sensibility to the intensity of the incident
light, with a relatively small dynamical range. It is therefore conceivable that
the huge dynamical range of sensory information processing of animals is a
collective effect, as it occurs in a random neural network close to criticality.
This mechanism, which is plausible from the view of possible genetic encoding
mechanisms, is illustrated in Fig. 1.15.
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