Emotional control - conditio sine qua non for advanced artificial intelligences?

Claudius Gros

Institute for Theoretical Physics Goethe University Frankfurt, Germany

» theory of complex and cognitive systems «

Overview _

preliminaries - setting the stage

neurobiology of emotions

no intelligence without emotional control?

physics & chemistry - life & living

foundations of life

complex regulatory networks - gene regulation - are at the basis of all living

there is no

- essence of life
- soul
- . . .

all there is

- physics, chemistry, biology, ...
- complexity
- emergence (?)

[John Hopkins]

physics & chemistry - brain & AI

consciousness and emotions are fully retained - also as experienced qualia for a functionally identical synthetic brain

nature of support unit irrelevant

- wetware (brain)
- hardware, ...

only function is important

- \rightarrow artificial intelligences
- \rightarrow synthetic emotions, consciousness

[Wikimedia.org]

synthetic intelligences

achievements / status

- algorithmic problem solvers
- Deep Blue, Drapa challenge, ...

goal

- artificial (hyper-) intelligences
- autonomously planning self motivated
- living / organismic

traditional AI robots

robots as hyper-intelligent slaves

first intelligent problem solver

second autonomous decision taker

third/forth emotional / consciouss

[Gizmodo.com]

traditional AI robots are evolved utility maximizers

the motivational problem

is life-long utility maximization computable?

utility function

- unkown
- does one exist?
- not computable

scarse resources for decision making

- information
- computational power
- time

emotional control

diffusive emotional control decision making in an environment of uncertainty and scarse resources?

preliminaries - setting the stage

neurobiology of emotions

no intelligence without emotional control?

neurotransmitters and neuromodulators _

local trans-synaptic chemical information transmission

GABA: inhibitory, glutamate: excitatory

neurotransmitters and neuromodulators

modulating

synaptic plasticity neural thresholds, gains, ...

* norepinephrine
* dopamine
* serotonin

* choline, oxytocin, ...

[Physiological Reviews]

no direct cognitive information processing - diffusive control

moods, emotions and neuromodulators

diffusive volume control

dopamine neurons

- activated by other neurons 'cognitively'
- have vast projections
 '200.000 synapses'
- no individual target neurons 'volume control'
- encoding reward, surprise, ...

why is there a need for a diffusive emotional control system?

[Frontiers in Computational Neuroscience]

preliminaries - setting the stage

neurobiology of emotions

no intelligence without emotional control?

humans and emotions

caprice of nature or conditio sine qua non?

The most developed cognitive beings on earth, humans, are infused with emotions; they play a very central part in our lives.

Is this a coincidence, a caprice of nature, perhaps a leftover of our genetic heritage, or a necessary aspect of any advanced intelligence?

emotions and behavior

mental states / moods / emotions

```
anxiety (Angst, worry)
uncontrollable, unavoidable situations (upcoming)
```

fear

behaviors of escape, avoidance

attention

concentrating on key aspects

pleasure

worth seeking mental states

emotions, learning and reward

learning

- * unsupervised, automatic
- basic motor control
- sensory stimuli, receptive fields, preprocessing

learning

* supervised, rewards (internal/external)

dopaminergic neurons

[substantia nigra, hypothalamus] \longrightarrow [amygdala, hippocampus]

amygdala

- emotion, reward, motivation, learning, memory, attention
- stimulus-reward association
- reward clue prediction

emotions - preferred level of activation .

angriness act in order to achieve the preferred level of angriness.

emotions & learning

suppression / enhancement of behaviors leading
away from / twoards the preferred level of activation

utility function determination

Cognitive information processing – intelligence – may be largely viewed as utility maximization.

The determination of the appropriate utility function beeing the domain of diffusive emotional control.

cognitive information processing

problem solving, utility maximization autonomous learning

emotional control

preferred level of activation genetic preferences

universal cognitive systems

humans are universal learning systems

- first approximation
- instincts, reflexes supplementary, not defining

cognitive information processing

problem solving, utility maximization autonomous learning

emotional control

preferred level of activation genetic preferences

genetic preferences

preferred levels of activation (emotional control)

proprioceptual survival parameters

- hunger, pain signals
- blood sugar level, ...

Gros, in Handbook of Research on Synthetic Emotions.., '09

mainstream AI / cognitive systems

evolved problem solvers

 \iff

universal learning systems

based on specialized algorithms

based on genetic preferences

Gros, Cognitive Computation, '10

autonomous goal generation .

how does an advanced AI decide what to do?

traditional AI / modern robotics

- humans instruct robots
- utility maximization solve task

organismic AI / living intelligences

short-term	long-term
utility maximization	general behavioral strategies
instincts / survival parameters	diffusive emotional control

evolution and the motivational problem

complexity barrier

decision taking with scarse resources

- information
- computing power
- time

short-term survival

- instincts
- cognitive control (firing rates, ...)

long-term Darwinian fitness optimization

- diffusive emotional control
- modulatory control (firing thresholds, ...)

» a conditio sine qua non for human-level AI? «

graduate level textbook

- The small world phenomenon in social and scale-free networks
- Phase transitions and self-organized criticality in adaptive systems
- Life at the edge of chaos and coevolutionary avalanches resulting from the unfolding of all living
- Living dynamical systems and emotional diffusive control within cognitive system theory