PHYSICAL REVIEW B

VOLUME 48, NUMBER 1

1JULY 1993-1

Cluster expansion for the self-energy: A simple many-body method for interpreting
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The self-energy of a translational invariant system of interacting fermions may be expanded in
diagrams contributing to the self-energy of finite clusters with open boundary conditions. The
exact solution of small clusters might therefore be used to construct a systematic approximation
to the self-energy of the infinite system. This approximation incorporates both the local and the
itinerant degrees of freedom on an equal footing. We develop this method for the one-band Hubbard
Hamiltonian and apply it to the three-band Hamiltonian of the CuO superconductors. Already
the lowest nontrivial approximation yields interesting results for the spectral density useful for the
interpretation of photoemission experiments. We find (i) transfer of spectral weight from the upper
to the lower Hubbard band upon doping, (ii) the formation of an isolated band of Zhang-Rice singlets
separated from the band of triplet states by a many-body gap, and (iii) creation of density of states

above the top of the oxygen band upon doping.

I. INTRODUCTION

Both itinerant and local degrees of freedom are im-
portant in correlated Fermi systems, such as the high-
temperature superconductors, and need to be accounted
for in calculations of their microscopic parameters and
response functions. Since a full many-body solution is
not available, theoretical studies and, consequently, in-
terpretation of experimental data need to resort to vari-
ous approximations. Band-structure calculations,! quan-
tum chemical studies,? and small-cluster calculations®
have been successfully used in combination with pho-
toemission experimen‘cs‘i’5 to extract'™ the electronic
matrix elements of the CuO planes in the perovskite
superconductors.’~7 For other theoretical studies a slave-
boson formulation of one-band models® and of the three-
band Hubbard Hamiltonian® has been used. Studies with
X operators!® and with the unrestricted Hartree-Fock!?
and the Mori-Zwanzig projection technique'? have been
performed.

Consensus has been reached that near half-filling the
so-called Zhang-Rice singlets!3 715 constitute the low-
lying electronic excitations. At finite doping concentra-
tions the situation is less clear and only impurity-type
calculations®® have been performed up to date. One
question of both theoretical and experimental interest
is the role of the oxygen bands, in particular the role of
the matrix elements for hopping processes directly from
one oxygen atom to another, ¢,,, upon the nature of the
states at the Fermi level. One may reformulate this ques-
tion and ask why are high-temperature superconductors
and heavy-fermion materials different? Here we will pro-
pose a surprising simple answer to this question. In par-
ticular we will show that for the perovskite lattice in the
Mott limit (i.e., when occupation of the copper d1° state
is suppressed) it will be just the absolute sign of t,,
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which determines the nature of the states at the Fermi
level.

We note that Green’s functions obtained from the ex-
act diagonalization of finite clusters contain in a very pre-
cise way information upon the one-particle self-energy of
the infinite system. We develop then a cluster expan-
sion for the self-energy, which (i) is exact in both the
local and the itinerant limit and (ii) may be systemati-
cally improved considering larger clusters. We apply this
method to the one-band and to the three-band Hubbard
model. We find, already in suprisingly simple approxima-
tions, details of the one-particle density of states which
we compare with results obtained from x-ray-absorption
experiments. 6

II. ILLUSTRATION:
THE ONE-BAND HUBBARD MODEL

We will illustrate the method for the one-band Hub-
bard model in the one-site approximation. Generaliza-
tion to a general many-band Hubbard model and larger
clusters will then be, in principle, straightforward and
discussed in detail for the case of the perovskites in the
next section.

The one-band Hubbard model on a D-dimensional sim-
ple cubic lattice is given by

H=t ) &h,ep,+UD &hiér1th Cn,- (1)
<Rle):°' R

Here the éJ{z,o and &g, create and/or annihilate
fermions on site R, ¢ is the hopping matrix element be-
tween nearest-neighbor (NN) sites (R,R’) , and U is the
on-site Coulomb repulsion.

We are interested in the Matsubara one-particle
Green’s function Gr,.(T) = —(TTéR’U(T)éI‘,G(O)) and
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the respective spectral density, p(w) = —2ImGret (W),
where the retarded Green’s function Gi',(w) is related17
to the Matsubara Green’s function via the analytic con-
tinuation iw, = w + 6, with § = 0+. The one-particle
Green’s function is given in momentum space by

1

G ) =
koo (iwn) iwn + 4 — ek — Tk,o (iwn)’

(2)

where u is the chemical potential and ex the one-particle
dispersion relation. Gy ¢ (iw,) is a function of the one-
particle self-energy,

1 e (R—R .
ﬁz € k(R-R )ER,R’,U(“‘J'n), (3)
R,R/

Yk,o (iwn) =

where L denotes the number of sites of the lattice consid-
ered and Yr R/, (iwn) is the sum of all irreducible dia~
grams contributing to the one-particle self-energy which
start at site R and end at site R/'.

Approximations to the real-space components of the
self-energy, the YR R’ o (iwn), may be obtained by ex-
actly diagonalizing finite clusters with open boundary
conditions. Clusters with periodic boundary conditions
are of no use here, since they allow for processes which
may not occur on the lattice in the thermodynamic limit
(for instance, propagation around the cluster). This is
not the case for clusters with open boundary conditions,
although there translational invariance is broken.

The real-space cluster Green’s functions G§ ,(iwn)
and the respective self-energies, the X§ p/ . (zwn) are
well defined and may be evaluated exactly’ for the cluster
considered by a diagonalization routine or even analyti-
cally for some small clusters. The relation between the
cluster Green’s functions and self-energies is, in general,
nontrivial, and we list in Appendix A these relations for
some selected clusters. In any case, once we have ob-
tained numerically (or analytically) the expressions for
the ¥§ g/, (iwn) we may use Eq. (2) and Eq. (3) to
construct approximations for the Green’s function of the
extended lattice. These approximations incorporate both
the local and the itinerant degrees of freedom on an equal
footing, namely, both the limit U — 0 and limit ¢ — 0
are recovered exactly. Furthermore, the such constructed
approximations are systematic, in the sense that consid-
eration of larger and larger clusters will eventually lead
to the exact self-energy.

For concreteness, let us consider a cluster with one site
Ry only. The exact Green’s function
1—n_, N—o
wn+4  twp+pu—U

Gho,oliwn) = (4)
is related to the one-site cluster self-energy %1 (iw,) via

1
Ton ¥ i —TL(wn)’ )

G%‘o,o’ (an) =

where n_, denotes the density of particles with spin —o.
We may invert Eq. (4) and Eq. (5) and obtain

n_U (iwp + p)

1, _
To(iwn) = i+ — (1 —n_x)U

(6)

as the first-order approximation!® for Yr_g’ ,(iw,) in
Eq. (3). In this one-site cluster approximation for the
self-energy Ym«R’,o(iwn) = 0. For the Green’s function
of the extended lattice we then obtain in this approxima-
tion

Gi,oliwn) = z’wn+u~ek1—21 (iwn)
ar) L aa(lk) (7)
T iwn+p—wi(k) wn+pu—wsz(k)’
with
wiz(k) = (U+e)/2

+1/(U +e)? — 41 —n_o)Uex (8)

and aja(k) =1/2[1 F{(1 —2n_,)U — ex H{(U + ex)? —
4(1 — n_o)Uex}~/?]. Each Bloch state is split into two
contributions, belonging to the upper and to the lower
Hubbard band, respectively, as we can see from Eq. (8).

The next step is to determine the density of parti-
cles, n_,, entering Eq. (7) and Eq. (8). We have two
choices: The first oneis n_, = (exp[u/kT] + exp[(2u —
U)/kT))/(1 + 2exp[p/kT) + exp[(2n — U)/kT)), the so-
lution of the one-site problem. Clearly, this choice for
n_o, behaves discontinuously at low temperatures T" as a
function of the chemical potential . Our approximative
Green’s function for the extended system, Gy o (iwn),
would consequently be a discontinuous function of the
chemical potential in a quite arbitrary way. Since we do
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FIG. 1. Density of states, p(w), for the half-filled (n = 1)
one-band Hubbard Hamiltonian in the self-consistent one-site
approximation for the self-energy and various values for U =
0, 2, 4, 8 in units of t. As density of states a self-retracing
path approximation for D = 2 has been chosen. The shaped
region denotes the occupied states in the ground state. Note
that the gap between the lower and the upper Hubbard bands
opens for all U > 0.
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not expect the physical solution of the system, in the
thermodynamic limit, to show such a behavior, we dis-
card this way of determining the density from the solu-
tion of the cluster under consideration.

Instead we will ask the density of particles to be de-
termined self-consistently via

1 [ dw .
N, = f; /_ G () ImGi o+ i) nr (W)

(9)

where Gk,_o(w +6) depends itself on n, via Eq. (7)
and np(w) is the Fermi distribution function. Here we
consider the paramagnetic solution with n, = n_, =
n/2.

At half filling, for n = 1, a gap of magnitude [compare
Eq. (8)]

VUZ+ (W/2)2 — W/2 (10)

opens for any U > 0. Here the dispersion ¢ €
[-W/2,W/2], with the bandwidth W = 4D|t| for NN
hopping. This result is valid in general for any bounded
density of states, in any finite dimension.!® We illustrate
in Fig. 1 the resulting density of states for different val-
ues of U/t. For simplicity, we have chosen the D = 2
self-retracing path formula®!

Jﬁ\\_//w U=8,n=0.0
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FIG. 2. Density of states, p(w), for the one-band Hubbard
Hamiltonian in the self-consistent one-site approximation for
the self-energy at U = 8 in units of ¢ and various densities
n =0, 0.4, 0.8, 1. As density of states a self-retracing path-
approximation for D = 2 has been chosen. The shaded re-
gion denotes the occupied states in the ground state. Note
the transfer of spectral weight from the upper to the lower
Hubbard band upon doping from half-filling.

2D /42D — 1) = (¢ /)2
& @DE— (@ (1)

for the density of states (see Appendix C) when we re-
place 1/LY, — [de'p(¢’) in Eq. (9). Note that the
integrated density of states for both the lower and the
upper Hubbard band is 1/2 per spin.

In Fig. 2 we illustrate the self-consistent density of
states for U = 8t for various densities of particles n =
0, 0.4, 0.8, 1.0. Upon doping from half filling the lower
Hubbard band widens and spectral weight is transferred
from the upper to the lower Hubbard band, as it has been
experimentally observed for the Cu-O superconductors.18
We conclude that the cluster-expansion method for the
self-energy yields physically relevant results already in
the lowest order, the one-site approximation.

ple) =

III. THREE-BAND HUBBARD MODEL
FOR THE PEROVSKITES

We now apply the method outlined in the previous
section to the multiband Hubbard model on a two-
dimensional (2D) perovskite structure appropriate for
high-temperature superconductors. We take into account
the three most important orbitals, the copper dz2_,2 or-
bital and one for each oxygen in the unit cell, although
the inclusion of more orbitals, such as the dg,, dg,2_2,
and a second oxygen orbital, would be rather straightfor-
ward. Quite a good consensus has been reached upon the
parameters of this effective three-band Hubbard model.
We follow Eskes and Sawatzky® and take (in electron no-
tation) €, = 5.3 eV for the oxygen orbital energy (we
have set the zero of energy to the copper orbital energy,
€qg = 0), tgp = 1.3 eV, and tp, = 0.65 eV for the Cu-
O and the O-O hopping matrix elements, respectively,
and Uy = 8.8 €V for the on-site Coulomb repulsion on
the copper site. We neglect all other interaction matrix
elements; in particular we set U, = Uy, = 0.

As the smallest, nontrivial cluster, we consider a cen-
tral Cu site surrounded by four NN oxygen sites. Exact
diagonalization of the CuOy4 cluster can be done analyti-
cally since we do not have any interaction on the oxygen
sites. Only the symmetric orbital couples to the cen-
tral copper sites with ¢t = 2t4, being the effective matrix
element.?® The effective on-site energy of the symmetric
orbital is € = €, + 2t,,. We then have to solve an ef-
fective two-orbital problem. The eigenstates are given in
Appendix B. For the CuOy4 cluster we have only a site-
diagonal self-energy on the Cu site, ZdC“o“ (wr), which
is related (see Appendix A) to the exact copper Green’s
function of the CuOy cluster, G$"%*(iwy,), via

. ; i tz N
GSUO4 (%L)n,) — [an + w— ESUO“ (zwn) — m] .
n

(12)

The X$"°4(iw,) determined from Eq. (12) will then
serve as the approximate self-energy for the itinerant sys-
tem.

As the next step we generalize the self-consistency con-
dition Eq. (9) valid for the one-site cluster approximation
to the case of larger clusters via a canonical formulation.
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We may rewrite the imaginary time Matsubara Green’s
function as

Gy(ryp) = —e*" T [e_ﬂ(ﬁ_“ﬁ_n)Tfe"HdAe_"ﬁ(f’],

(13)

where we put explicit dependence on p in order to stress
that the trace in Eq. (13) is to be taken over the grand
canonical ensemble. Here 1/= = exp[A9?] is the grand
canonical normalization constant. Site and spin indices
are suppressed. In the tl;lermodynamic limit the expec-
tation value of exp[rH|d exp[—7H]d! occurring on the
right-hand side of Eq. (13) is independent of the ensem-
ble chosen for the trace (canonical or grand canonical).
For a finite cluster the choice of the ensemble makes a
difference and we will choose the canonical formulation.
We define the Green’s function of a CuQy4 cluster with a
fixed number N, of particles by

Ggu04 (r,N;) = —Tr [e—ﬂ(ﬁ—F)TTerﬁJe—rfl(f’r] ,
(14)

where the trace is over states with a fixed number N,
of particles on the CuOy cluster and 1/Z = exp[BF] is
the canonical normalization constant.

The particle density of the cluster, n., is fixed via linear
superposition,

e—lﬂ'Gguo‘i (7-’ p,) = [Nc +1-— Lcnc] Gdcuo4 (Ta NC)
+ [Lcnc - Nc] GdCUO4 (T’ Nc + 1)’
(15)

for n. € [Ne/Lc, (N:.+1)/L.], where L. is number of sites
of the cluster. The coefficients in Eq. (15) are chosen such
that Gg (7, ) ln,=(No+1)/L. = €THGg 4(1, N + 1)
and GdCUO4 (T» /“L)lnc=Nc/Lc = e-ruGSuCh (T’ NC) .

For the case of the high-temperature superconductors
we are interested in particle densities of n ~5.0-4.7 per
unit cell, corresponding to an average of 1 — 1.3 holes per
unit cell (note that the unit cell corresponds formally to a
CuO;, cluster with three orbitals). For the cluster approx-
imation to the copper self-energy we consider the CuOy4
cluster which contains three nonbonding oxygen orbitals
in addition to the hybridized bonding and antibonding
orbitals. Since the three nonbonding orbitals of the CuOy4
clusters are inert (and occupied), we need to consider,
for the calculation of the copper Green’s function, the
bonding and the antibonding orbitals only (which we call
the “effective two-orbital” problem). We solve the effec-
tive two-orbital problem for a total of N, = 2 and
N, +1 = 3 particles, corresponding to the situation
with two or one holes per unit cell, respectively, in Eq.
(15). Having determined G$"®*(iw,) from Eq. (15) we
obtain £5"4(iw,) from Eq. (12) and finally the full
Green’s function by replacing €4 — €4 + Edcuo“(iwn)
in the band Green’s function of the extended CuO plane
[see Eq. (C1) and Eq. (C6) in Appendix C and next para-
graph]. The average density n = n. entering Eq. (15)
is determined via the self-consistency condition Eq. (9).

For the band Green’s function we have used, for nu-

merical simplicity, a self-retracing path approximation,
which is highly accurate for the perovskite lattice (see
Appendix C). In Fig. 3 we illustrate the partial oxygen
and the partial copper density of states. The pure oxygen
band (g = 0, tpp, = 0.65) has a larger bandwidth than
the band with ¢4, = 1.3, t,p = 0.0, but nevertheless the
states at the top of the full band (4, = 1.3, t,, = 0.65)
are fully hybridized. This result depends crucially on the
absolute sign of ¢,, being positive. In Fig. 4 we present
the results for the oxygen and copper density of states for
the hypothetical case t,, < 0 (we did choose ¢, = 6.3
eV). The states at the top of the band are of nonbond-
ing oxygen character. In the Mott-Hubbard or charge-
transfer limit (i.e., with the copper orbital only half-
filled and occupation of the copper d° configuration sup-
pressed), doping would occur into these nonbonding oxy-
gen orbitals and the resulting state would be completely
different, resembling more the Kondo-lattice model.

Also note the singularity ~ |w+ u — €,|~/3 in Fig.
3 at w’ = €, = 5.3 eV. This singularity is a precursor
of the logarithmic Van Hove singularity of the true two-
dimensional band (with a cosinus dispersion relation).
It is quite remarkable that the self-retracing path ap-
proximation for the perovskites, which does sum up the
lowest-order loops around the copper sites ezactly (see
Appendix C), starts describing this Van Hove singular-
ity. Note that no indication of the Van Hove singularity
in two or higher dimensions can be found in the stan-
dard self-retracing path approximation [compare Fig. 3
with Eq. (11) and Fig. 2].

In Figs. 5 and 6 we present for various values of the
hole doping z = 0, 0.1, 0.2, 0.3 our results for the
copper and the oxygen density of states obtained from
the full Green’s function (solid line) with the self-energy
determined via the effective two-orbital approximation
at zero temperature, as described above. The respective
positions of the chemical potential are indicated by the
vertical arrows. For comparison we also show in Fig. 5
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FIG. 3. Oxygen and copper density of states, p,(w) and

pd(w), for the three-band Hamiltonian of the CuO-planes with
no interaction, Uy = 0, as a function of w’ = w + p. Shown
is the density of states of the hybridized bands (dotted line),
for the band with ¢, = 0 (dashed line), and for the pure oxy-
gen band (solid line) with a singularity of Van Hove type at
€p = 5.3 eV. Note the relative bandwidths. The nonbonding
oxygen orbitals lie (since t,, > 0 for the perovskites) in be-
tween w’ ~ (3,5.3) eV (dotted and solid lines). For tp, < O
they would be located at the top of the band (see Fig. 4).
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FIG. 4. Oxygen and copper noninteracting density of
states, pp(w) and pgq(w), for the hyphothetical case ¢, < 0
(ep = 6.3 eV, Ug = 0). Shown is the density of states of
the hybridized bands (dotted line), for the band with t,, = 0
(dashed line), and for the pure oxygen band (solid line). Note
that the states at the top of the band are of nonbonding oxy-
gen character (dotted line) and that for large Uy doping would
occur into these nonbonding orbitals leading to a Kondo-type
model.

the pure band density of states (dotted line), i.e., the
result for Uy = 0 and the positions and the weights
of the 6 peaks contributing to the density of states of a
single CuQOy cluster. For dopings « > 0 some more peaks
appear due to the contribution of GdC“O“ (ryN. =2) to

pale) T s U
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-6 -4 -2 0 2 4 6 8 10 12
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FIG. 5. Copper density of states, ps(w’ = w + u), for
various hole dopings z = 0, 0.1, 0.2, 0.3 and Ug = 0 (dotted
line) and for Uy = 8.8 (solid line) in the effective two-orbital
approximation for the self-energy. The respective position of
the chemical potential is indicated by the arrows. T', S, and U
denote the Zhang-Rice triplet, singlet, and the upper copper
Hubbard band, respectively. Also shown are the positions and
the weights of the § peaks of a single CuQOy4 cluster. Note the
transfer of spectral weight from w ~ (—2,0) of the hybridized
band to higher energies due to the interaction.
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0.1
A A
}
0.2
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FIG. 6. Oxygen density of states, pp(w’ = w + u), for

various hole dopings = 0, 0.1, 0.2, 0.3 and Uy = 0 (dotted
line) and for Ug = 8.8 (solid line) in the effective two-orbital
approximation for the self-energy. The respective position
of the chemical potential is indicated by the arrows. T, S,
U, and N denote the Zhang-Rice triplet, singlet, the upper
copper Hubbard band, and the nonbonding oxygen orbitals,
respectively. Also shown are the positions and the weights of
the 8-peaks of a single CuOy4 cluster. Note that the singlet
states form a separate many-body band and that spectral
weight above the top of the noninteracting band is created
upon doping.

Eq. (15); in particular we observe the strong growth of an
additional peak about 1 eV below the Zhang-Rice triplet
state upon doping.

The interaction does drastically affect the density of
states. The density of states of the copper band, ps(w’ =
w + ), is completely suppressed for w’ ~ (—1.5,0) and
transferred partially to lower and partially to higher en-
ergies (see Fig. 5). The nonbonding oxygen orbitals are,
on the other hand, neither affected by Uy nor do they
hybridize with the peak at w = 3.86 eV occurring for
finite doping, = > 0 (see Fig. 6). The Zhang-Rice singlet
shows up in the peak of the CuOy4 cluster at w’ = 8.51
eV, which happens to lie near to the top of the noninter-
acting band. The Zhang-Rice singlet hybridizes strongly
with the top of the noninteracting band since t,, > 0, as
we discussed above. The singlet band is separated from
the copper upper Hubbard band by the charge-transfer
gap and, as a new result, also from the triplet band. The
suppression of the density of states in between the triplet
and the singlet bands is a typical many-body effect due
to the translational invariance and the total sum rule
for the spectral weight. This effect, which is similar to
the one which leads to the formation of a separate upper
Hubbard band in the context of the one-band Hubbard
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FIG. 7. Oxygen density of states [pp(w’ = w + u), top]
and the empty states (bottom), for various hole-dopings
z = 0, 0.1, 0.2, 0.3. Upon doping the true position of the
lower peak shifts to higher energies (top), though a limited
experimental resolution of § = 200 meV [see paragraph above
Eq. (2)] might show a shift to lower energies (bottom), due
to the asymmetry of the band.

model (see Fig. 1), could not be observed in an impurity
calculation.®

At half filling the former top of the noninteracting band
coincides exactly with the top of the many-body valence
band, but upon doping density of states is created above
the top of the noninteracting band. This is an conspicu-
ous consequence of the many-body nature of the singlet
states as a band of antibound states. The integrated
weight of the upper band, located around w’ = 10.52
eV, decreases more or less proportionally to the doping,
i.e., by about 30% for = = 0.3.

In Fig. 7 we present the oxygen spectral weight
pp(w' = w + p) for energies around the position of the
chemical potential. We also show the results for the
empty states, i.e., pp(w’)[l1 — np(w’)], with the inclu-
sion of broadening effects of magnitude é§ = 200 meV.
A straightforward comparison of this curve with x-ray-
absorption experiments around the oxygen K edgel® is
not possible, since we did not include excitonic effects,
which would change the position of the peak at higher
energy. Nevertheless, the evolution of the peak at lower
energy (corresponding to the singlet states) with doping
compares well with the experiment, but the reduction
of the spectral weight of the peak at higher energy is
not nearly as pronounced as the one seen experimentally
and in simulations by a one-band Hamiltonian with in-
clusion of excitonic effects.'® We find, similar to the re-
sults for the one-band Hubbard model (compare Fig. 2),
a reduction of the spectral weight of the upper Hubbard
band proportional only to the amount of doping, which is
barely discernible in Fig. 7. We therefore conclude that
the results for the empty states presented in Fig. 7 would
not differ drastically when doping into a band insulator
would be considered and that the inclusion of final-state
interactions —the excitonic effects discussed by Chen et
al.1®— are important in order to explain the observed
drastic reduction of the weight in the upper Hubbard
band.

IV. CONCLUSIONS

We have shown that it is always possible to expand
the self-energy of an interacting, translational invariant

system in terms of the exact solution of clusters with a
finite number of sites. Then a systematic cluster expan-
sion is obtained which (i) converges to the exact solution
for large enough clusters and (ii) treats the local and the
itinerant degrees of freedom on a equal footing. This
method allows one to make use of present computational
possibilities by extracting a self-energy of the itinerant
system from the results of exact diagonalization studies
of finite clusters.

We applied the cluster-expansion method for the self-
energy to the case of the one-band Hubbard Hamiltonian
and to the three-band Hamiltonian appropriate for the
CuO planes of the high-temperature superconductors.
We showed that already the smallest clusters, namely,
the one-site cluster and the effective two-orbital cluster,
are good approximations and yield very interesting re-
sults for the one-band and the three-band Hamiltonians,
respectively. In particular, the transfer of spectral weight
from the upper to the lower Hubbard band is found nat-
urally in these approximations.

For the case of the CuO superconductors we find that
the band of singlet states at the Fermi level is separated
by a gap from the rest of the oxygen band, in particular
from the triplet states, due to an effect similar to the
one which leads to the formation of a separate upper
Hubbard band for the one-band Hubbard Hamiltonian.
We find in addition that the singlet states create spectral
weight above the oxygen band upon doping, due to the
formation of a translational invariant antibound state (in
electron notation).
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APPENDIX A: RELATION BETWEEN
SELF-ENERGIES AND GREEN’S FUNCTION
FOR SOME SMALL CLUSTERS

The numerical or analytical solution of a Hamiltonian
of Hubbard type on a small cluster with open boundary
conditions allows to obtain the exact Green’s functions of
the cluster. The processes contributing to these cluster
Green'’s functions are a subset of the processes contribut-
ing to the Green’s functions of the extended system, a re-
lation which holds also for their respective self-energies.
These self-energies are defined as irreducible with respect
to the noninteracting Green’s functions, which incorpo-
rate only the kinetic energy.

As an intermediate step we consider the cluster Green’s
function graphically in terms of an expansion around the
chemical potential, i.e., with

G,EO)('LLU”) = 1/.’1,'1;, T; = uun + u— €, (Al)

as the unperturbed Green’s function on site ¢, where we
have included an on-site energy €;. In terms of this ex-
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pansion around the chemical potential the cluster self-
energies ¥, ;, are defined as sums of all processes which
do not contain a GE-O) line which may be cut. By com-
paring the corresponding Dysons equations, we find the
relationships
i =255
iy =t+ X,

for (i,7) not NN,
for (4, 7) NN, (A2)
between the cluster self-energy in terms of an expansion
around zero, X;;, and the cluster self-energy in terms
of an expansion around the kinetic energy, Xf;, which
are then our approximation for the self-energies of the
extended system.

We now note that Dyson’s equation in terms of the
G§0) and the various X;; is equivalent to a generalized
tight-binding problem with “on-site energies” ¥,; and
“hopping matrix elemets” X;»;, which may be summed
up.

Two-site cluster. For a two-site cluster (or two-orbital

cluster) we have X1, Yoo, and X1 = ¥3;. The
relations are
-1
1= { —211—212m2 2“221] ) (A3)
Ggﬂ = Gf 121212 32,27
with analogous equations for G5, and G5; = Gf,.

Given the exact cluster Green’s funct1ons the G7 ;, one
needs to invert Eq. (A3) and obtains, with help of Eq.
(A2), the two-site approximations for the self-energy of
the extended system, the ¥f ;.

For the symmetric two—s1te cluster, with ¥, 1 = 30 =
Yo, 1 =x2 =, and 12 = ¥y, Eq (A3) may be also
obtained by considering the Fourier components of this
effective tight-binding problem,

1= 3 [ : + : ]
1 7 2 | z=20—=2 T—Yo+2 ’
(o] 1 1 (A4)
c — 1 1 _ 1
12 — 2 |z—%o—21 r—3o+21 | °
Similarly we find for the case of no interaction on site

2, i.e., with 212 = t, 21 1 = Ei,l’ 22'2 = 0, so that
Gi1 = (z1— tz/xg) 1 leading to Eq. (12).

Three-site cluster The (n + 1)-site cluster with one
central site and its n equivalent NN sites can be eas-
ily done considering the star of NN sites as a one-
dimensional finite ring and a decomposition into Fourier
components. For the case of the three-site cluster we have
the on-site self-energies o0, X1,1 = X2,2 for the central
site and its NN, respectively, and the off-site self-energies
¥o,1 = Xop,2,2L1,2. The symmetric-antisymmetic combi-
nation of the orbitals on sites 1 and 2 has the effective
on-site energies ¥, = 3¥;; + X312 and £, =Xy — X1,0,
respectively. We find

-1
60 = [360 —Xo,0 — 20,1;7%2-;21,0] ,
1= 3 [GS1+GSol = 3 (GSs + GS .l (A5)
1
~ 1 [ B Y O—zo-'@:o,ozo,l]

+ [:L‘l - a]

and similar equations for G§ ; and GY .
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APPENDIX B: EIGENSTATES
OF THE CuO4 CLUSTER

The dynamics of the CuOy cluster corresponds to an
effective two-orbital problem since the nonbonding oxy-
gen orbitals do not couple to the central copper site. In
this effective two-orbital model the d site has an on-site
energy €, (which we set to zero) and an on-site Coulomb
repulsion Ug = 8.8 eV. The parameters of the p site are
€ = €p + 2ty = 6.6 €V and U, = 0. The effective hy-
bridization matrix element is ¢t = 2t4, = 2.6 €V, all in
electron notation. The eigenstates are

Li,0) = (ad] +bip}) [0},

|2’T’U> = dAszﬁIr'O%

2,T,0) = 2-1/2 (d*”f Td*) |0)

|2>S’j> = ( d‘)%ii_}'b/\/_[ TP1+PTdT]+C]PT )|O>
13,i,0) = (a1«21,+bp*)d* pLo10),

14,8,0) = did{p}p!]l0),

where the a;, b; (i = 1,2) and the a;, b;, ¢; (j =1,2,3)
are coefficients to be determined. T and S stand for
triplet and singlet, respectively. The energies €(1,,0) of
the one-particle states |1,4,0) and the energies €(3,{i=
1,2}, o) of the three-particle states |3,¢,0) are given, re-
spectively, by the eigenvalues of

0 ¢t e+U; t
t e)’ t 2 )

The energies of the triplet states are

(B1)

€(2,T,0)

€(2,7,0) = € and the energies €(2,S,7) of the three
singlet states are given by the eigenvalues of
Uy \/gt 0
V2t e V2t |, (B2)
0 V2t 2
which can be found using Cardano’s formulas. The

state with the lowest eigenvalue corresponds then to the
Zhang-Rice singlet. Finally €(4,S5,0) = Uy + 2¢ corre-
sponds to a state in the upper Hubbard band. Once the
eigenvalues and the eigenstates have been determined,
the cluster Green’s function Eq. (14) may be calculated
using Lehmann’s representation.

APPENDIX C: SELF-RETRACING PATH
APPROXIMATION FOR PEROVSKITES

Here we derive the formulas for the density of states
to be used in the self-consistency Eq. (9) for the case
of the Cu-O planes. For numerical simplicity we use a
generalized self-retracing path approximation.?! We set
T =iwn+p—€ and T, = iw, + 4 — €y . We define
a band self-energy X, for the copper and the oxygen
Green’s functions via

ze2 171
Gy = [:cd — _L:c,,—dz,,] ) (C1)
Gp = [zp— 221)]—1 ’
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where Z = 2D is the coordination number.
We discuss first the case t,, = 0, which is simpler. In
this case the band self-energy is determined from

(Z - l)tgpil -

Tp— 3, (C2)

Ep = tﬁp l::l:d—

with the solution

2%p = - (Z2- 2)t¢2ip/xd

— /(@ = (Z - 2)t3,/24)? — 483,20/,
(C3)

where the sign in front of the square root has been cho-
sen such that X — p vanishes in the limit ¢4, — 0. In one
dimension, for Z = 2, the self-retracing path approx-
imation [Eq. (C3)] together with Eq. (Cl) is exact.?!
In two dimensions, for Z = 4, the four band edges of
the bonding-antibonding band (given by the zeros of the
square root) are

2p/2 % \/(2/2)? + 482, (1 £ +/374) (C4)
and are very close to the exact result!®
zp/2 % \/(:z:p/2)2 483 (1+1). (C5)

The general case tp, # 0 is more complex. In order to

obtain a recursion formula for X, similar to Eq. (C3)
we consider a CuQy cluster via an equation-of-motion
technique. We then find

Ty = (2p—5p)y/(zp — Zp — ¥),
(C6)

y = tgp/wd + 2(tPP + t?dp/xd)z/(mp - EP - 2t3p/zd):

which might be solved recursively. Note that the absolute
sign of tp, enters Eq. (C6). The interacting Green’s
function for the perovskites will be obtained by replacing
Tg — iwp + p— 55" (4w,) in Eq. (C6) and Eq. (C1)
with £$"94(iw,) determined from Eq. (12).

For t,, = 0, Eq. (C6) reduces to Eq. (C3). For
tap = 0, Eq. (C6) becomes

To(zp — p)? = Qtf,p:z:p, (C7)

which might be solved with Cardano’s formulas. Note
that Eq. (C7) is not identical to that of the standard
self-retracing path approximation?! (though the net of
oxygens connected by t,, do form a simple 2D square
lattice) given in Eq. (11) since part of the loops around
plaquettes are summed. The self-energy becomes purely
real for z, > 1/27/2tpp ~ 3.6742t,,. This band edge
is above the one obtained by the standard self-retracing
path approximation 24/2D — 1 ~ 3.464 in 2D. The re-
sulting density of states, illustrated in Fig. 3, has a pole
of type |x,|~1/3, as one can easily show, which is a pre-
cursor of the logarithmic Van Hove singularity in 2D.
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