
VOLUME 68, NUMBER 15 PH YSICAL REVI EW LETTERS 13 APRIL 1992

Luttinger Liquid Instability of the 2D t-J Model: A Variational Study

Roser Valenti " and Claudius Gros
1nstitut fu rPh'ysikU, niversitat Dortmund, Postfach 500 500. 4600 Dortmund 50, Germany

(Received 13 December l 99l)

We study variationally the possible occurrence of a Luttinger liquid in the normal state of the 2D t-J
model. For this, we generalize to 2D a Luttinger-Jastrow-Gutzwiller-type wave function introduced by

Hellberg and Mele for the 1D t-J model. We show that this wave function does show also in 2D the

characteristic correlations of a Luttinger liquid and that gains in kinetic energy stabilize the Luttinger

liquid state with respect to Fermi liquid states with short-range correlations only. In addition, we pro-

vide rigorous lower bounds to the transition to the fully phase-separated state at larger ratios Jl t

PACS numbers: 7).45.6m, 71.10.+x, 71.30.+h

Normal-state properties of fermionic systems are of in-

terest. While ordinary metals are well described by the
Landau theory of Fermi liquids, certain 1D model sys-
tems, like the Hubbard and the t-J model, behave like
Tomonaga-Luttinger liquids [1-5]. In a Luttinger liquid
the spin and charge correlation functions have a po~er-
law falloff at large distances with nonuniversal exponents
and the momentum distribution function develops an

algebraic singularity near the Fermi surface of the form

n(k) =n(kt:)+ C ~k
—kF ~

'sgn(k —kF),

~here C is a constant and the exponent c depends on the
model parameters. Typically [3,4], a varies between zero
and —„. A Fermi liquid would have a jump in n(k) at
k =k~, corresponding to a =0.

The Luttinger liquid state realized in the context of the
ID Hubbard model shows [6] separation of charge and

spin degrees of freedom. Anderson [7] has hypothesized
that the normal state of certain strongly interacting one-
band models relevant for the high-T, . superconductors [8]
might show generalized [9) Luttinger liquid behavior also
in two dimensions. In particular, he suggested that the
characteristic separation of charge and spin excitations
might be responsible for the experimentally observed
temperature dependences of the resistivity [10] and the
Hall eA'ect [11]. Alternatively, Varma et al. [12) pro-

posed a phenomenological explanation of some experi-
mental properties of the Cu-oxide superconductors in

terms of logarithmic singularities at the Fermi surface.

H( J = t g (ct ~( ~+ct pcs, ~)+J g St'SJ',
(i,j ),cr (ij &

(2)

where the e; (e; ) are the creation (annihilation) opera-
tors on site i of electrons with spin a = ], j, the S; are the
spin operators on site i, and (i,j ) denotes pairs of nearest
neighbors (nn) on the square lattice.

We shall study the following variational ansatz for the
ground state of Eq. (2):

Recently, Hellberg and Mele [13] have proposed a sim-

ple variational wave function which incorporates the
known properties of a Luttinger liquid, namely, the long-
distance falloff of the correlation functions and an alge-
braic singularity in the momentum distribution function
[see Eq. (I)] at the Fermi surface. This wave function is

a Jastrow-Gutzwiller-type state and contains only one
variational parameter which controls the strength of the
long-range, spin-independent interactions in the Jastrow
prefactor. The long-ranged nature of the Jastrow-type
interactions leads to Luttinger-liquid-type correlations in

the state [14]. The phase diagram obtained with this
wave function for the 1D t-J model agrees in detail with

the one obtained from a combination of exact diagonali-
zation of small systems [15] and scaling relations [3]. In

this paper we generalize to two dimensions this remark-
able wave function and use it to study variationally the
possible occurrence of a Luttinger liquid state in the 2D
t-J model.

In the subspace of no double occupancy the 2D t-J
model is defined as

fO(T, S)& = g exp — g [(I —S)lnfr; —r~f+S8&;,)] Pddetl detl +c,, (0) .
Irl, . . . , rNI 2T i (j rt. , 0

(3)

where det =det[e' ' " ] are the Slater determinants of a
filled Fermi sea of the spin-a particles, Pd =II; (I
—n, , ln, , 1 ) is the projection operator onto the subspace
of no doubly occupied sites, and pl. . .„l denotes the
sum over all particle configurations (the spin indices are

In the limit T ~, Eq. (3) reduces to the projected
Gutzwiller wave function, here suppressed). The exponential in front of the Slater

determinants in Eq. (3) is the spin-independent Jastrow
Pd «tl «tl IIe,'„.IO&, prefactor corresponding to the partition function of a

classical two-component repulsive (attractive) 2D gas at
temperature [16] T)0 (T (0). The interaction has two

contributions, a long-ranged Coulomb [17] part of
strength (I —S) and a nn interaction of strength S.

In one dimension the logarithmic interaction in the Jas-
trow prefactor of Eq. (3) has been shown [13,14] to be
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the correct analytic form which induces Luttinger-
liquid-type correlations. Notably, the momentum distri-
bution function acquires an algebraic discontinuity at the
Fermi edge with [14] a=(l/4T')[I/(T'+ l)l in Eq. (I)
[with T'=T/(I —S)l.

We will show below that also in two dimensions the
above defined wave function acquires an algebraic singu-
larity at the Fermi surface, as seen from the momentum
distribution function, for 0 & T (~ and 0 ~ S & 1, and
that therefore the notion of a Luttinger liquid is well

defined even in 2D. In addition, the second variational
parameter, S, in Eq. (3) allows us to compare the Lut-
tinger liquid state (which is realized for all S & I) to a
state with only short-range correlations, realized for
5=1.

At T=~, the wave function Eq. (3) reduces to the
Gutzwiller wave function which up to now was the best
known trial wave function for the 2D t-J model in the
limit J=O. Lowering the (positive) temperature T, first a
Luttinger liquid state is realized and then, for T- ~4p, a
transition [18] to a Wigner crystal occurs driven by the
repulsive Coulomb interaction. At negative temperatures
the interaction is attractive, leading to enhanced pairing
fluctuations and phase separation, as in ID [13].

It is well known [19,20] that the t-J model separates
into a hole-rich and a particle-rich phase at large ratios of
J/I. Variationally we can obtain the transition to the ful-

ly phase-separated region by comparing the best varia-
tional energies obtained from Eq. (3) with the energy of
the fully phase-separated state, which we can reliably es-
timate [21] as 2n(S; S~)J- 0 66—92n.J, where n is the
density of particles per site. Since the variational ener-
gies for the homogeneous phase are upper bounds, the
transition to the fully phase-separated state in the true
ground state therefore has to occur at larger ratios of
critical J/t than those obtained by our variational ap-
proach presented here.

We have carried out an extensive study of Eq. (3) on
finite lattices using the variational Monte Carlo method
[22]. At low values of J/r we find the Luttinger state to
be energetically stable at al1 densities 0 & n & 1. The op-
timal variational parameters, T-3.0 and 5-0.4, vary
slightly with particle density, n. We would like to note
that it is the kinetic energy which stabilizes the Luttinger
liquid in the 2D (and the I D [13])t-J model, and not the
spin-correlation energy. In contrast, the ordered states
considered so far variationally [23] lose kinetic energy
and are stabilized by gains in spin-correlation energy.
The Luttinger liquid state gains about 1% in (projected)
kinetic energy with respect to the Gutzwiller state [24,25]
and is therefore lower in projected kinetic energy than
any other variational wave function proposed [23] so far.

The difference in energy between the best overall state,
T-3.0, S—0.4, and the best state with short-range
correlations only, T-4.5 and S= I, is about [26,27]
0.2%. Note that for a gain in kinetic energy this gain
might be considered substantial and should survive the in-

troduction of additional variational parameters. Unfor-
tunately no reliable estimates of the ground-state energy
for the 2D t-J model are yet known for general fillings,
e.g. , the quality of rigorous lower bounds [28] obtained so
far for the ground-state energy of the 2D t-J model at
J=O is not yet good enough to define a fine scale for com-
parison of our variational data. On the other hand we

might take the case of I D as a guide. Here we know [29]
that the diff'erence in energy (at J=2r) between the exact
ground state and the Gutzwiller wave function is less
than 1%, setting a very small scale as significant.

In Fig. 1 we present our results for the phase diagram
of the 2D t-J model as a function of particle density n
and ratio J/t determined by evaluating the wave function
Eq. (3) on a series of finite clusters with periodic (P) or
antiperiodic (AP) boundary conditions (BC). The clus-
ters are such that they tile the square lattice via transla-
tions by L~ =(L„,L, ) and L2 ( —L,„L,), with a total
number of sites L =L, +L, Specifically, we consid-
ered the following (n, L,L„,L,„BC, symbols in Fig. I)
systems: (4,32,4,4,AP, circles), ( —,',68,8,2,AP, triangles),
( 4,32,4,4,A P,circles), ( —,64,8,0,AP, crosses), ( P, ,82,8, 1,
P,squares). We observe that the Luttinger state is stable
up to J-1.2 for large n-0.9 and up to J-4.0 for
n-0.25. The data, which are obtained from lattices of
very different geometry and sizes, show a remarkable
consistency. (Note, in particular, the two data points for
n = —,'.)

The optimal values of the variational parameters
change with increasing J/t. The optimal temperature in-
creases monotonically while the admixture of explicit nn

correlations, S, remains quite unchanged. For small den-
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FIG. l. Phase diagram of the 2D I-J model obtained with
the Luttinger-Jastrow-Gutzwiller wave function Eq. (3). For
small r/J, a Luttinger liquid state (0& T & ~, 5 & I) is found.
The transition to the fully phase-separated state is indicated by
the solid symbols (solid line). Only for low densities n does the
optimal (variational) temperature pass through ~ (dotted line),
the Gutzwiller state, before phase separation sets in. The open
symbols (dashed line) indicate the line of phase separation
obtained when the usual density-density attraction term,—(J/4)n;n, , is added to the r JHamilton-ian Eq. (2). The lines
are guides to the eye.
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sities, n -—,', a Fermi liquid state (T=~) becomes stable
(as in ID [13]) for J-4t and a region of enhanced pair-
ing fluctuations (T (0) occurs before the system phase
separates. But at intermediate to large particle densities
no region of enhanced pairing fluctuations occurs (in con-
trast to ID) and the system phase separates directly out
of the Luttinger liquid state.

We have also drawn in Fig. 1 the line of phase separa-
tion obtained when we include the term —(J/4)
xP&; J&n;nj to the t JH-amiltonian as defined by Eq. (2).
This phase-separation line compares very well with re-

sults obtained from a high-temperature expansion [20]
but differs at larger particle densities n and small ratios

J/t from the results obtained from a small-cluster study

[19]. Note, in particular, that the region of interest for
the high-T„superconductors (n -0.8-0.9 and J/r -0.2-
0.3) is far away from the region of phase separation.

Clearly, in the region of large n) 0.8 substantial spin-

correlation energy can be gained considering phase-

condensed states [23] which will push the phase-

separation line to still larger J/t. In this study we did not

consider these ordered states since we wanted to concen-
trate on the question whether the (projected) kinetic en-

ergy would favor Luttinger-liquid-type correlation in the
normal state. In addition, these ordered states might gen-

erally coexist [25] with Luttinger-liquid-type correlations.
In Fig. 2 we present the momentum distribution func-

tion n(k) for the Gutzwiller wave function (T =~,
squares), the Luttinger liquid state (T=3.0, S=0.4, cir-

cles), and the correlated Fermi liquid state (T=4.5,
S I, triangles). We did evaluate these three states for

two lattices [30], ( 4,64,8,0,AP, open symbols) and

( —,',256, 16,0,AP, solid symbols) along the (1,0) direction

(I -X) and the (1,1) direction (I -M). Inside the Fermi

surface the n(k) for the Luttinger state deviates qualita-
tively from the n(k) of the Gutzwiller state, which is

strictly constant. In Fig. 3 the same data for the n(k) in-

side the Fermi surface are plotted as In~n(k) —-'

~
vs

ln
~
k —kF ~, where k = (0.7543,0)&r and kF = (0.4545,

0.4545)&r are the respective Fermi wave vectors for n = —,
'

in the thermodynamic limit. The curves for both Fermi
liquid states are flat, indicating a jump at the Fermi sur-

face for the momentum distribution function. In con-

trast, the data for the Luttinger liquid state has a finite

slope, indicating an algebraic singularity, as in 10
[13,14] with exponents [31] at~ 0&- —,—'„and at~ ~&-;,',& in

the (1,0) and the (1,1) direction, respectively [see Eq.
(1)]. The data for n(k) for the Luttinger liquid state de-

viates quantitatively only by a small amount from those
of the Gutzwiller state (note the scale in Fig. 2), due to
the high efl'ective temperature, T'=T/(1 —S)-5.7. In

1D the optimal temperature is —
& for J=0 and the re-

sulting eA'ects in the momentum distribution function are
much larger. To check that this is true also in 20, we

calculated n(k) for parameters T=0.7, S=O and found

strongly enhanced Luttinger liquid efl'ects with [31]
Q(~ 0) lp and a~i i ~- —,

' . In Fig. 2 no upturn is ob-

served in the momentum distribution function for the

Luttinger liquid state for values of k outside the Fermi
surface [as expected from Eq. (1)l since the systems eval-

uated do not contain k's considered close enough to the
Fermi surface at the high eff'ective temperature T'

=T/(1 —S)-5.7. But for the wave function with T
=0.7, S=O the Luttinger liquid exponents a are large
enough to observe such an upturn in the momentum dis-
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F IG. 2. Momentum distribution function n (k) for the
Gutzwiller state (squares), the Luttinger liquid state (circles),
and the Fermi liquid state with nn correlations (triangles) along
the (I,O) direction (1-X) and the (I,I) direction (1 -M). The
open (solid) symbols denote data obtained from lattices with 64
(256) sites. Note the different scales for n(k) inside and out-
side the Fermi surface. The statistical errors are (1-2)%
(about the symbol size). The lines are guides to the eye.
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FIG. 3. A log-log plot of the momentum distribution func-

tion n(k) inside the Fermi surface for the Gutzwiller state
(squares), the Luttinger liquid state (circles), and the Fermi

liquid state with nn correlations (triangles) along the (l,o)
direction (I -X, scale to the right) and the (l, l) direction (I -M,
scale to the left). The open (solid) symbols denote data ob-

tained from lattices with 64 (256) sites. Note the finite slope of
the data for the Luttinger liquid state, indicating an algebraic
singularity at the Fermi edge. The statistical errors are (1-2)%
(about the symbol size). The lines are guides to the eye.
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tribution function when approaching the Fermi surface
from outside.

In conclusion, we have shown that a Luttinger liquid
state can be defined in two dimensions. For this we have
generalized a Jastrow-Luttinger-Gutzwiller-type wave
function proposed by Hellberg and Mele [13] for the I D
I-J model to two dimensions. We have shown that this
wave function does indeed contain the typical correlations
of a Luttinger liquid, notably an algebraic singularity in

the momentum distribution function at the Fermi edge.
We found that this Luttinger-liquid-type state is stabi-
lized by gains in (projected) kinetic energy even in the
presence of some additional variational parameters. We
calculated the phase diagram and obtained rigorous vari-
ational bounds for the transition to the fully phase-
separated region at large J/i which agree quantitatively
very well with results [20] from a high-temperature ex-
pansion. In particular, we found that the region of in-
terest for the high-T, . superconductors is far away from
the phase-separated region.
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