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We study models of strongly correlated electrons in one- 
and two dimensions. We exactly diagonalize small clus- 
ters with general boundary conditions (BC) and integrate 
over all possible BC. This technique recovers the kinetic 
energy part of the (extended lattice) Hamiltonian exactly 
in a grand-canonical formulation. A continuous range of 
particle densities may be described with this technique 
and the momentum space can be probed for arbitrary 
momenta. For the Hubbard Hamiltonian we recover de- 
tails of the Mott-insulating behaviour for the momentum 
distribution function at half filling, both in 1D and 2D. 
Off half-filling the shape of the canonical Fermi surface 
is strongly distorted in 2D with respect to the grand ca- 
nonical Fermi surface. The shape of the grand canonical 
Fermi surface obtained by this finite-size technique re- 
duces in the weak-coupling limit exactly to that of the 
infinite-lattice Fermi sea. 

Introduction 

Effective one-band models, like the Hubbard and the t - J 
model, have been studied intensively in recent times. These 
studies are partly motivated by the discovery of the high- 
temperature superconductors and, as a consequence of 
them, our understanding of the 1D Hubbard and t - J  
models has progressed considerably. In particular, the 
Tomonaga-Luttinger liquid [1], realized in 1D [2], has 
drawn the attention of many physicists. The momen- 
tum-distribution function in the ground state, n(k) 
--  t =~ckc~} 0, of a Tomonaga-Luttinger liquid has the 
characteristic form 

n ( k ) -  ~ - 3 +  CI k -kF[  ~ sgn ( k -  ke),  (1) 

for momentum k near the Fermi-momentum, kF, 0~ being 
a non-universal critical exponent and C a constant. The 
1 D infinite-U Hubbard model has rigorously been shown 
to behave as a Tomonaga-Luttinger liquid [3, 4, 5]. In 2D 
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the situation is less clear. Anderson's hypothesis [6] that 
an analogous behaviour to the 1 D case is to be expected 
in two spatial dimensions, has not yet been substantiated. 
A diagrammatic expansion in exponentially low densities 
[7] has resulted in a standard Fermi-liquid behaviour. 
In this paper we will investigate the prospect of exact 
diagonalization procedures to shed light on this issue. 

It is not easy to extract information on properties in 
momentum space from diagonalization studies of small, 
real-space dusters. Generally, for a cluster with N s sites, 
only N~ k-states can be probed in momentum space and 
properties near the Fermi-surface (like (1)) are difficult 
to access. The Bethe-Ansatz equations for the 1 D Hub- 
bard model in the infinite-U limit have been solved for 
chains up to 32-sites [8] and a direct confirmation that 
(1) holds has been possible. For the 1D t - J  model no 
analytic solution is known apart from J/ t= 0, 2 [9] and 
the ground state is accessible by numerical methods only 
for chains with up to 16 sites. This length is not enough 
to probe (1) directly, but the use of a geology relation 
[3], between the compressibility and the critical exponent, 
e, made possible a study of the Tomonaga-Luttinger be- 
haviour [10]. Consistent results have been obtained by a 
recent variational formulation [ 11 ]. 

It has been pointed out previously that other than 
periodic boundary conditions (BC) might in certain cases 
improve the accuracy the results obtained from exact di- 
agonalization of small clusters. In particular the variation 
in energy with system size can be minimized by an ap- 
propiate choice [12, 13] of the BC or by integration [14, 15] 
over all possible BC. Here we explore this technique in 
more detail and apply it to the Hubbard model for finite 
and infinite U in 1D and 2D. We will present results for 
the momentum distribution function, n(k), and discuss 
the limitations of this technique. 

Technique 

Translational invariant many-body hamiltonians consist 
of two parts. The kinetic energy term, diagonal in too- 
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mentum space, and the interaction term, diagonal in real 
space. The choice of the basis used to formulate a given 
approach will generally determine which of the two terms 
is treated more throughly. The standard Green's function 
approach in momentum space takes the kinetic energy 
term exactly into account, insofar as the non-interacing 
limit is recovered rigorously. It is now possible to refor- 
mulate the exact diagonalization of small clusters in terms 
of a conserving approximation in the language of per- 
turbation theory. To be concrete, let us consider the one- 
band Hubbard Hamiltonian in one or two spatial di- 
mensions, 

a , ( i , j >  

+ U ~ ,  ni, zn,, , . (2) 
i 

Here cY,, o, c,, o and n~, o = c},, o c,, o are the creation/anihi- 
lation and the particle number operators on site i of fer- 
mions with spin a = % $, respectively, t > 0 is the hopp- 
ing matrix element between nearest neighbor sites, 
(i,  j ) ;  U >= 0 is the onsite Coulomb repulsion. We con- 
sider (2) on a finite cluster with general boundary con- 
ditions. For illustration we consider a square cluster with 
periodicity N~ and Ny (The lattice constant is set to unity 
throughout this paper.) in x- and y-directions respectively 
and impose the general boundary condition 

q/ (x  + Nx, y )  = e ~x q / ( x , y )  (3) 

q / ( x , y +  Nu)=e;=>'q/(x ,y)  

on the one-particle wavefunction ~, (x, y). (The many- 
body wavefunction has to obey (3) for every argument). 
~x,y=0,  ~r correspond to periodic and antiperiodic 
boundary conditions, respectively. The eigenstates 
of (2) in the non-interacting limit, U=  0, are given 
by plane waves of the form q/(x, y) 
= e x p [ i ( k ~ x + k y y ) ] / N l / ~ N y .  The positions of the 
k-vectors are determined via the boundary conditions: 

o G + 2 ~rm x 
k ~ -  , m ~ = 0 , . . . , N ~ -  1 

N.~ 

ku _ ~y + 2 rgmy 
Ny , m y = O , . . . , U y - 1 .  

(4) 

We allowed values of kx, ky form a rigid grid of 
N, = Nx • N z points which is shifted by the boundary con- 
ditions, ~ ,  ~u" By varying ~,  E [0, 2 ~[ the complete Bril- 
louin zone is sampled by the grid of  the N, allowed 
k ~  (k~, ku) values. In Fig. 1 we show for illustration the 
case for a 4 •  system. The 16 (open and filled) circles 
are the positions of the k's in the Brillouin zone, for a 
given set of boundary conditions ~ , e y .  By varying 
e~, ey e [0, 2 re[ the filled circles will cover the shaded re- 
gion, which covers 1/16 of the Brillouin zone. Also shown 
in Fig. 1 is the Fermi-surface at half-filling (dashed-point 
line), which encloses 8 k's. The N, discrete Energy-levels 
are given by 
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Fig. 1. The position of the k's (open and filled circles) in the first 
Brillouin zone for a 4 • 4 cluster with general boundary conditions. 
When we vary the boundary conditions between [0, ~z[ the k denoted 
by the filled circles will cover the hatched region, 1/16 of the 
Brillouin zone 

o~ x + 2 7rm x 

czy + 2 ~m~, 
(5) 

where on the right side of the equality k has been 
substituted by its value given by (4). For a numerical 
diagonalization study it is convenient to perform a 
gauge transformation to the Fermi-operators c(x,y), o 
- - + e x p [ - i ( X e x / N ~ +  yC~y/Ny)]C(x,y), o. Consequently 
the diagonalization of the N ~ X N y  cluster considered 
is done with periodic boundary conditions and a phase- 
dependent hopping matrix element - t(,~, y), (x,, ,.,) 
= - t e x p [ i ( x - x ' ) e ~ / N , + i ( y - y ' ) % / N y ] .  

The results of the non-interacting ( U = 0 )  and ther- 
modynamic limit, are recovered exactly in a grand-ca- 
nonical formulation of the boundary condition integra- 
tion technique on a finite lattice and and average over 
e~, e y e  [0, 2 re[. The (grand canonical) ground state en- 
ergy and the particle density per site are given by 

1 ~ d~xd~y N x ,  N), 
e (/~) = N~ o (2re) 2 ~, (e (k)--/ l)  0 (U -- e (k)) 

........ y=0 (6) 
1 2~ d~ ,d~y  U . v ,  U y  

n = ~ s  (2 re)2 ~, 0 ( / * - a  (k)), 
Igl x , If~ y ~ 0 

where k is given by (4). /~ is the chemical potential 
and 0(e) is the step function. ( 0 ( e ) = 0 ,  1/2, 1 for 
e < 0, = 0, > 0 respectively,) The canonical ground-state 
energy, given by the Legendre transform [14] e(n)  
=sup  (e (/l) +/in),  is just the energy of the (here 2D) 

/.t 

Fermi-sea. 
The real-space interaction, U > 0, on the finite N x x Ny 

cluster corresponds in momentum space to scattering from 
any k to any other k '  of the allowed Nx • Ny discrete 
momenta given by (4) (see also Fig. 1), for the same ~x, 
%. In the language of diagrams, the scattering between 
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this discrete set of allowed k's summed up to all orders, 
vertex corrections included. 

Let's denote with E( ..... y).N~, the total (canonical) 
ground-state energy for the cluster considered with N e 
particles. The (grand-canonical) ground-state energy and 
particle density per site is then given for the general, 
interacting case by 

1 ~ dczxd~y 
e(M)=~ 0 (27/') 2 

(7) 
• inf (E( ...... ~), N~ - 11 Ne) 

N e  

e { n )  

O. 

- . 2  

- . 4  

- . 6  

- . 8  

~ 1D H u b b a r d ,  U = 8  

�9 = 200:200 , 

. 

o 
t I I I I [ t I I 

. 2  . 4  . 6  . 8  1 . 0  

In practise, the integrals over the boundary conditions in 
(7) are approximated by a finite sum. We typically choose 
between N b = 20,... 120 different boundary conditions and 
diagonalize the cluster as many times. A total of N+ • N b 
different k's are then included in the calculations. We will 
use the notation N++: N+ • N b for such a cluster, where the 
first index stands for the number of sites in real-space 
and the second index for the number of sites in momen- 
tum-space. For  example a 8:480 cluster is one with 8- 
sites (in real-space) diagonalized for 60 different bound- 
ary condition (which we choose to be evenly distributed 
between [0, 2 7r[). A 8:8 cluster is just the exact solution 
for the 8-site problem with one definite boundary con- 
dition only. 

Results 

We will first discuss results for the ground-state energy 
in 1 D where we can compare with Bethe Ansatz results 
and then present results for the momentum distribution 
function in 1D and 2D. In 1 D the boundary condition 
integration technique yields the exact ground-state energy 
in both the U =  0 and the U =  oo limit. For  a test of the 
method we therefore consider an intermediate U =  8. We 
have diagonalized with a modified Lanczos method chains 
with N = 4, 8 sites and particle number N e ranging from 
1 to N s. For the 4-site chain we have averaged over 120 
boundary conditions (a 4:480 cluster) and for the 8-site 
chain over 60 boundary conditions (a 8 : 480 cluster). The 
ground-state energy per site, e(n) (in units of t), as a 
function of density, n, is plotted in Fig. 2 (continuous 
line). For  comparison, we have indicated with the open 
symbols the data for the corresponding cluster with only 
periodic boundary conditions (the 4" 4 and 8:8 system). 
Also shown in Fig. 2 is an estimate of the ground-state 
energy of  the infinite chain as obtained by the diagonal- 
ization of a 200-site chain, with periodic BC, via the Bethe- 
Ansatz equation. Clearly, the integration over boundary 
conditions reduces in magnitude the finite size corrections 
to the ground-state energy. 

In addition, a (nearly) continuous set of densities can 
be described with the boundary condition technique, 
whereas a fixed boundary condition diagonalization re- 
covers only densities being multiples of 1/N~, correspond- 
ing to N e= 1, 2 , . . . .  Some finite size corrections to the 
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Fig. 2a, b. The ground-state energy per site, e (n) (in units of t), for 
ID Hubbard chains and U= 8. The continuous line is the result 
for chains with (a) 4 sites in real space, 480 in momentum space 
(4: 480) and (b) 8 sites in real space, 480 in momentum space (8 : 480). 
The data for chains with only periodic boundary conditions: (a) 
the 4 : 4 cluster, (b) the 8 : 8 cluster, are denoted by the open symbols. 
Also shown is the Bethe-Ansatz result, obtained from chains of 
length 200 (the 200:200 cluster) 

boundary condition integration data are still discernible 
and manifest themselves most prominently in some kinks 
in the otherwise continuous curves, e.g. at n = 0.5 for the 
4: 480 chain. For  most densities, the average over particle 
numbers, N~,, is important insofar as more than one value 
of N,+ contributes to (7). But at certain densities l/N+. (0, 
0.25, 0.5,... for the 4-site chain and 0, 0.125, 0.25 .... for 
the 8-site chain) the canonical and the grand-canonical 
average are identical and only one value of N~ has to be 
considered. This property is closely related to the fact, 
that in 1 D the Fermi-surface is uniquely determined by 
the particle densities. In 2D the particle density deter- 
mines only the volume enclosed by the Fermi surface and 
the shape of the Fermi surface is (as we will discuss below) 
strongly size dependent in a canonical study (with fixed 
particle number). In 2D the average over particle number 
has always to be done off half-filling, only at half filling 
does in 2D the canonical and the grand-canonical rep- 
resentation coincide. 

The momentum distribution function, n (k), is defined 
via n (k) = 1/2 < c~, + Cm, + + C*m, ~ Cm, S ) 0 where the relation 
between the momentum, k, and m---(mx, my) is given by 
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Fig. 3. The momentum distribution function, n (k), as a function 
of momentum (in units of ~) for a 1D Hubbard chain (U= 8) with 
8 sites and 6 particles. The momentum distribution in the grond- 
state of the spin singlet subspace is given by the continuous line. 
The overall ground-state (with no total-spin constraint) becomes a 
triplet near the Fermi-surface (dashed line) 

(4) and < )0 denotes the expectation value in the N~- 
particle ground-state of  the cluster. We consider only 
clusters with identical number  of  up- and down spins. 
First we discuss a generic result. 

In Fig. 3 we present n (k) as obtained from the diag- 
onalization of  a 8 �9 480 Hubbard  chain with U = 8 and six 
particles. In this system, a level crossing occurs between 
a spin-singlet and a triplet (dashed line). The solid line 
in Fig. 3 is the data for n (k) when the diagonalization is 
performed within the subspace of total spin singlets. (In 
the Appendix we explain the projection technique used 
to handle the contraint of  fixed total spin.) The transition 
to a triplet state near the Fermi-surface, which occurs 
when the total spin is not kept fixed, is due to non-filled 
shells near the Fermi-surface and is closely related to 
oscillations of  ground-state properties as a function of 
chain-length which have been considered previously in 
1D in the context of  the periodic Anderson [12] and 
Hubbard  [13, 8] models and in 2D in the context of  the 
Gutzwiller wavefunction [ 16] (see also [ 14]). 

The phenomenon of ferromagnetism at the Fermi-edge 
is even more pronounced in 2D. Four  k vectors are de- 
generate in the case of  periodic BC. When these states 
are only partially filled, multiple level-crossings into high 
spin states occur as a function of boundary conditions 
and therefore also as a function of  momentum,  k (com- 
pare (4)). Here we are not interested in the question of 
ferromagnetism and all the data presented below for n (k) 
will be for ground-states in the subspace of spin-singlets. 

In Fig. 4 we present n ( k )  for a 4:160 chain (4 sites, 
40 different boundary conditions) with 2 particles (cor- 
responding to quarter filling) and U =  1, 8, 64, as a func- 
tion of  k (in units of  re). As a consequence of the inter- 
action the values of  n (k) is suppressed for k < k F and 
enhanced for k >  k e. n ( k )  drops somewhat f rom k = 0  
towards the Fermi-edge but a finite discontinuity is ob- 
served [17] (This behaviour is generic for densities n < 1.) 
at the Fermi-edge, and the Tomonaga-Lut t inger  be- 
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Fig. 4. The momentum distribution function, n (k), as a function 
of k (in units of ~) for a one dimensional 4:160 system (4 site 
chain, 40 different boundary conditions) at quarter filling (N e = 2 
particles) and U= 1, 8, 64 (smooth curves), Note the discontinuity 
at the Fermi-edge (at k F = ~/4); the Tomonaga-Luttinger behaviour 
expected in the thermodynamic limit is not recovered [17]. Also 
shown (square symbols) are the data points for the 4:4 chain (four 
sites, periodic boundary conditions only) 
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Fig. 5. The momentum distribution function, n (k), as a function 
of k (in units of ~) at quarter filling and U= 8 and a 4:240 chain 
with N e = 2 particles and a 12:240 chain with N e = 6 particles. Note 
the spurious discontinuities in n (k) due to the discreteness of the 
clusters. These discontinuities decrease in size with increasing chain 
length. Also included is data for a 20-site chain [18] (square sym- 
bols) 

haviour (see Eq. (1)) expected for the ground-state in the 
thermodynamic limit is not recovered. Also shown in 
Fig. 4 are the data for the respective 4-site chain with 
periodic boundary conditions only (square symbols). 

In Fig. 5 we present n (k) at quarter filling and U =  8 
for a 4:240 chain with 2 particles (dashed line) and a 
12:240 chain with 6 particles (continuous line). With in- 
creasing chain-length spurious discontinuities of decreas- 
ing magnitude occur in n ( k )  at momenta  n'zr/N~. 
+ rc/(2Ns) ( n ' =  1 , . . .N  J 2 ) .  We also included in Fig. 5 
the data for n ( k )  obtained from a 20-site chain [18] 
(square symbols) with 10 particles. 
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Fig. 6. The momentum distribution function, n(k), as a function 
of k (in units of =) for a 4:480 chain (4 site chain, 120 boundary 
conditions) at half filling (N, =4  particles) and U= 1, 8, 64 (smooth 
curves). Note the absence of a discontinuity at the Fermi-edge, 
indicative of an insulating state. Also shown (square symbols) are 
the data points for the 4:4 chain (four sites, periodic boundary 
conditions only) 
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Fig. 7. Comparison between the momentum distribution function, 
n(k), as a function of k (in units of ~r) for 4:480 (dashed curve) 
and 8:480 (continuous curve) Hubbard chains (4 and 8 sites, 120 
and 60 boundary conditions respectively) at half filling with U= 8. 
The difference between the two curves yields an estimate of the 
(quantitative) finite-size corrections to n (k), which are smaller than 
5%. This estimate is supported also by a comparison with Monte- 
Carlo data [19]. 

In  Fig. 6 we present  n(k) for a 4 :480  cluster with 
4 particles and U =  l, 8, 64. At  half-filling an in- 
sulating state is expected, as it is bo rn  out  by the data.  
n(ke=rr/2)=0.5 exactly (due to part icle-hole symme-  
try), no discontinuity occurs at the Fermi-edge  and the 
slope o f n  (k) through the Fermi-edge is linear. Also shown 
in Fig. 6 are the da ta  for  the respective 4-site chain with 
periodic bounda ry  condi t ions only (4 :4  system, square 
symbols) .  

In Fig. 7 we compare  n(k) for  a 4 :480 chain and an 
8:480 chain (4 and 8 real-space sites, 480 sites in mo-  
m e n t u m  space) at half-filling and U =  8. The difference 
between the two curves yields an est imate of  the finite- 
size corrections of  n(k) as calculated by the bounda ry  
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\ t 

. . . . . . . .  i 

U - 84  --" " . . . . . . . . . . . . . . . .  
" ' " -  . . . . . . .  ,h . . . . . . . . .  "" [ 
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Fig. 8. The momentum distribution function, n (k), for a 2D, half- 
filled Hubbard cluster, with 8 sites and 1600 = 402 different bound- 
ary conditions. The smooth curves are the data for n (k) along 
(0, 0)--*0 z, 0)--+(n, ~r)--,(0, 0) in the Brillouin zone for U= l, 8, 64. 
Note the absence of a discontinuity at the Fermi-edge (at (0, 7r) 
and 0r/2, ~r/2)), indicative of an insulating state and the linear 
versus quadratic behaviour ofn (k) - 1/2 near the Fermi-edge along 
the (1, 1) and the (t, 0) direction respectively. Also shown (square 
symbols) are the data points for the corresponding 8 : 8 cluster (eight 
sites, periodic boundary conditions only) 

condi t ion technique. Quali tat ively the curves do not  
change with chain length, quanti tat ively the difference is 
less than  5%. We compared  the da ta  presented in Fig. 5 
with those obta ined  f rom Monte -Car lo  s imulat ions [19] 
and found  agreement  within ,,~ 5%. This degree of  agree- 
men t  suppor ts  the our  est imate of  the finite-size correc- 
tions. 

In Fig. 8 we present  n(k) for  an 8:402 two-dimen-  
sional H u b b a r d  cluster at half-filling (ATe= 8 particles) 
and var ious  U. The  cluster is such tha t  it tiles the square 
lattice by periodicity th rough  translat ions of  (2, 2) and 
( - 2, 2). The m o m e n t u m  distr ibution is shown for  a cut 
th rough  the Brillouin zone along (0, 0)--* (0, 7r) 
---,(re, Jr)--+(0,0) ( compare  with Fig. 1). Again,  as in 1D 
at half-filling, no discontinuity occurs at the Fermi  edge, 
here at  (0, n )  and (re/2, rr/2),  indicative of  an insulating 
behaviour  of  the ground-state .  No te  the an iso t ropy  of  
n(k) at  the Fermi  surface, where n ( k F ) =  1/2 exactly. 
Along  the (1, 1) direction n ( k , k ) - 1 / 2  passes linearly 
th rough the Fermi  edge and quadratically along the (1, 0) 
direction, due to the saddle point  in the kinetic energy. 
Also shown in Fig. 8 are the da ta  points  for  the respective 
8-site cluster with periodic bounda ry  condit ions only 
(square symbols) .  Al though  the cluster corresponds  
nominal ly  to an 8:402 (8:1600)  system, only 
60 = 3 • 20 = 3 • (40/2)  different bounda ry  condit ions 
have actually been evaluated in order  to obta in  the da ta  
presented in Fig. 8. This is possible since clusters with 
different BC are diagonalized independently.  In general, 
one will diagonalize only clusters with bounda ry  condi- 
t ions approp ia te  to the k-values ( compare  Eq. (4)) one is 
interested in. 

In Fig. 9 we present  da ta  for  the same 2 D  cluster with 
8 sites in real space and 802 BC, U =  8 and oo and a fixed 
n u m b e r  o f  particles N e = 2 (a canonical  study). This cor- 
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Fig. 9. The momentum distribution function, n (k), for a 2D, Hub- 
bard cluster, with 8 sites, 14400= 1202 different boundary condi- 
tions and N~ = 2 particles. The smooth curves are the data for n (k) 
along (0, 0)--+(Tt, 0)-+0t, ~)--+(0, 0) in the Brillouin zone for U= 8 
(continuous curve) and U= oo (long-dashed curve)�9 Note the strong 
anisotropy of the (canonical) Fermi-edge. A sharp discontinuity 
along the (1, 1) direction (kF~(~/4, ~/4)), and pseudo-insulating 
behaviour along the (1,0) direction (kF~(a/2,0)). Also shown 
(square symbols) are the data points for the corresponding 8:8 
cluster (eight sites, periodic boundary conditions only) 
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Fig. 10. The momentum distribution function, n (k), for a 2D, Hub- 
bard cluster, with 8 sites, 14400 = 1202 different boundary condi- 
tions and Ar e = 4 particles. The smooth curves are the data for n (k) 
along (0, 0)--+(n, 0)--,(n, a)---*(0, 0) in the Brillouin zone for U= 8 
(continuous curve) and U= 64 (long-dashed curve). Note the strong 
anisotropy of the (canonical) Fermi-edge. A sharp discontinuity 
along the (1, 1) direction (kF~(n/2, 7r/2)), and pseudo-insulating 
behaviour along the (1,0) direction (kF~(~/2,0)). Also shown 
(square symbols) are the data points for the corresponding 8:8 
duster (eight sites, periodic boundary conditions only) 

responds to a nominal density n = 2/8  = 1/4 and the (ca- 
nonical) Fermi-surface includes therefore 1/8 of  the Bril- 
louin zone. We note a strong anisotropy in the behaviour 
of  n ( k )  near the canonical Fermi-edge. Along the (1, 1) 
direction, a discontinuity occurs at the Fermi-edge, here 
at ,-~ (re/4, rt/4). Along the (1,0) direction n (k) crosses 
linearly [17] the Fermi edge, here at ~ (~/2 ,  0). An equiv- 
alent behaviour is also observed for the same eight-site 
cluster but with 4 particles, as shown in Fig. 10. 
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Fig. 11. An illustration of the eight-site system in momentum space. 
Shown are the positions (open circles) of the eight distinct momenta 
in the first Brillouin zone for the case of periodic boundary con- 
ditions. The volume inside the Fermi-surface for studies with fixed 
particle number  (the canonical Fermi volume) is given by the square 
region cross-hatched (2 particles) and simply hatched (4 particles). 
For comparison we have included (full circles) the positions of the 
grand-canonical Fermi-edge along the (1, 1) and (1, 0) direction for 
/~ = - 2  1/2 t in the U =  0 limit, which is retained in perturbation 
theory 

In Fig. 11 we illustrate schematically the shape of the 
canonical Fermi-surfaces for the 8-site system with fixed 
number  of  particles N e = 2 and N e = 4 respectively. The 
open circles denote the position of the discrete momenta  
in the first Brillouin zone for the case of periodic bound- 
ary conditions. For  the system with two interacting par- 
ticles, the Fermi-surface is very close (though not iden- 
tical) with the cross-hatched square region in Fig. 11. The 
simply hatched region (together with the cross-hatched 
region) in Fig. 11 is the approximate shape of the volume 
inside the Fermi-surface for the interacting 8-site system 
with fixed N e = 4. Similarly, the Fermi surface is highly 
distorted with respect to its shape in noninteracting 
( U =  0) limit, as we will explain below. 

The highly anisotropic Fermi-surfaces shown in Fig. 11 
are due to the fact that the respective studies where done 
with fixed particle numbers. Such a study does not recover 
the non-interacting, U =  0, limit (of  the extended lattice). 
In particular the exact shape of  the Fermi-surface is not 
recovered for U =  0 (though the volume is correctly de- 
termined by the particle density). As an illustration of 
this phenomena we consider the example of  2 particles 
at U = 0  on the 8-site 2D cluster. We have confirmed 
numericaly that the Fermi-surface of the cluster with fixed 
N e = 2  is given by the cross-hatched region in Fig. 11. 
Now we consider the grand-canonical  formulation on the 
same 2D 8-site cluster. The particle number is now at- 
lowed to vary and the chemical potential, p,  is fixed. 
Clearly, for small/~ ~ - 4 t the particle numbers contrib- 
uting to the grand-canonical average in (6) will be only 
N e = 0 and Are= 2. At a certain, critical Pc fluctuations 
with N e = 4 will start to contribute to (6). It  is easy to 

show that/1 c = - 2 1/2 t. Therefore N e = 0 and N e = 2 are 
sufficient to recover the non-interacting limit exactly 
for /* ~ [ - 4 t ,  - 2  l ~ t ] .  In particular, also the shape 
of the Fermi-surface will be correctly described. For  
/ 4 = - 2  l ~ t  the Fermi edge lies at k F = ( ~ / 4 ,  rr/4) 



along the (1, 1) direction. Along (1, O) direction the Fermi 
edge has the form kF=  (k x, 0), where k x is the solution 
of 

- 2  t ( c o s k x +  1)=  - 2  l / 2 t ,  (8) 

or kx~0.364 re. These values o f k  F are denoted by the full 
circles in Fig. 11. Note that weak-coupling perturbation 
theory would not change these k F. Clearly, canonical and 
grand-canonical Fermi-surfaces differ dramatically and 
we conclude that a grand-canonical formulation is indis- 
pensable in a finite-size study of 2D Fermi-surface prop- 
erties with the boundary-condition integration method at 
fillings n < 1. Only at half-filling, n = 1, do the canonical 
and grand-canonical Fermi-surfaces coincide. 

Conclusions 

We have presented fundamentals of  the boundary con- 
dition integration technique [14] and applied it to the 
case of  the Hubbard  model in one- and two spatial di- 
mensions [20]. In this model ferromagnetism occurs nat- 
urally at the Fermi surface which we suppressed by work- 
ing in the subspace of spin-singlets. In 1 D we find that 
for fillings smaller than one particle per site, this tech- 
nique does not recover the Tomonaga-Lutt inger  liquid 
behaviour expected for the ground-state in the thermo- 
dynamic limit. Nevertheless, we gain substantially upon 
the estimate of  the ground-state energy, when compared 
with the diagonalization of clusters with only periodic 
boundary conditions. In addition, a nearly continuous 
set of  densities may be described with the boundary con- 
dition integration technique. 

At half filling, details of  the insulating behaviour for 
the ground-state are recovered both in 1 D and 2D. The 
momentum distribution function, n(k) ,  shows no dis- 
continuity at the Fermi-surface and passes linearly the 
Fermi surface. The finite size corrections to n(k )  are 
smaller than 5% even for small length chains in real space 
(eight sites). Off  half filling we find in 2D, within the 
context of  a canonical approach, large anisotropies and 
that the resulting canonical Fermi surface is strongly dis- 
torted with respect to the grand-canonical Fermi surface. 
We conclude that a grand-canonical formulation is im- 
portant  for finite-size studies of  the 2D Hubbard  and 
t - J model. 

In conclusion, we studied the boundary condition in- 
tegration technique and showed that this technique ex- 
tracts useful new information on Fermi-surface proper- 
ties from exact diagonalization studies of  finite clusters. 
It  should be possible, in particular, to study the Mort- 
transition at half-filling and extract information on the 
shape of  the Fermi-surface in 2D. Still, many open ques- 
tions remain to be studied. 
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Appendix 

Here we explain the simple projection technique used to 
enforce the constraint of  a given total spin, usually the 
singlet contraint. Any wavefunction 1~)  for fermions 
with given spin on a finite lattice can be expanded in 
components of  the total spin 

I~ ' )=a l [~ 'o )  +a2[~' l)  + . . .  +as  .... ]~'s ..... ) ,  (9) 

where the [ ~ s )  are the components with fixed total spin, 
S2tal I~r = S(S-~  1) [ ~ ' s )  and Stotal= ~, S i. Clearly 

i 

[ ~ r  = (S2otal- Smax (Smax @ 1)) I ~ )  (10) 

has no component  of  maximal spin Sma • Iteration of 
Eq. (9) and Eq. (10) allows to project a given wavefunc- 
tion on the subspace with a given total spin and perform 
the Lanzcos iterations within this subspace. 
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