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An Exact Mapping of the t-J Model to the Unrestricted Hilbert space
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We present an exact mapping of the thermodynamical properties of the t-J model to the unre­
stricted fermionic Hilbert space. At half filling this is accomplished by the introduction of a complex
chemical potential. At finite hole concentration we generalize the t-J model to a particle-hole sym­
metric form. Identifying a symmetrized combination of a hole and a doubly-occupied site with the
charge carrier, we prove that the thermodynamical properties of original and the generalized t-J
model are identical.

1. Introduction
The t-J Hamiltonian has the form:

-t ~ (1 - c+ C. )c+ c. (1 - c+ C. )L.J ',-0' 1,-(7' ',0' 1,(1 ',-0' 3,-17

(i,i),u

We can construct a particle-hole-symmetric ex­
tension of the kinetic energy by adding, for each
(ij), an extra term in which the particleHhole re­
placement is made simultaneously in both the i,j
operators. This gives

2. Particle-Hole Symmetrization
It is first necessary to make the dynamics com­

pletely particle-hole symmetric. Here a hole is an
empty site and a particle is a doubly-occupied site,
or doublon. The spin parts of Eq.(l) act symmet­
rically on holons and doublons, since both are sin­
glets.

Here c~ is the creation operator for an electron','"
with spin 17 =i,! on the lattice site i, and (i, j)
denotes pairs of nearest neighbor (n.n.) sites. The
S, are the spin operators for the antiferromagnetic
(J ~ 0) nearest-neighbor interaction. The opera­
tors in parentheses in the first term in Eq.(l) (the
kinetic energy, with t > 0) are the constraints that
enforce single occupancy. Doubly occupied sites
are assumed to be so high in energy, due to a strong
on-site Coulomb repulsion, that they are out of the
Hilbert space.

To compute the thermodynamics, we must com­
pute the partition function as a trace of e-{3H over
the projected, or singly-occupied, Hilbert space.
We will show that this is equivalent to the trace
of a more complicated operator, with the trace ex­
tended over all fermionic states (including states
with doubly-occupied sites). As we have shown
in previous work l

, this allow for standard Green's
function techniques, whereas the use of a restricted
Hilbert space causes Wick's theorem to fail.

Zproj=Tr(e-{3(H-I'Nhl). (3)
pro)

T=-t ~ [(l-n,_u)c+ c. (l-n
J
·_",)L-J I S,u 1,U I

(i,i),,,, (2)

+ ni,u c· c+ n' I.',-(1 J,-(1 J,CT

j! i ==> i j!.Oi==>iO

Nate that T does not mix the two types of charges.

3. Partition Function
The partition function is a trace over the pro­

jected Hilbert space; i.e., on each site the allowed
states are 10), 1 j), and I !). That is, the desired
partition function is

In this extended model there are two types of
charged objects, 10) and 1 i !), which are treated
identically. Suppose we have N h holes and N d dou­
blons. The dynamics of the extended Hamiltonian
(including Eq.(2)) with a total number of charged
objects N c = N h + N d is identical to the original
t-J Hamiltonian (in the projected subspace) with
N c holes. The second piece in T hops a doublon
exactly the way the first term moves a hole:

where we have included a chemical potential Jl for
holes. This Zproj is exactly equivalent to the ther­
modynamics of holes plus doublons under the ex­
tended or symmetrized Hamiltonian, and with an
unrestricted trace, as we will show.

(1)+JL Si,Sj.
(i,j)
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In order to enlarge the trace to the complete
fermionic space, i.e. including states such as I ll},
we must first construct a particle-hole symmetriza­
tion operator:

propagation. Due to the particle-hole symmetriza­
tion operator Pp - h , this process too contributes
with the same amplitude as the others.

Including the extra exponential in Eq.(6), the
contribution of these two related states to Z is

(4) 2 sin a,8(nle- PH In).

Thus as claimed a plays the role of a chemical po­
tential.
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In particular, when a -+ 0, the contribution of
these two states cancels, and only states in which
all sites are singly occupied contribute. That is
a= 0 gives half filling. '

Generalizing the above, consider the set of
2N • states with a given configuration of singly­
occupied sites. These are the states which arise
by letting each of the N c charges be either a
hole or a doublon. These states contribute
(2sina,8)N h (nle- f3H ln) to Z. In the restricted
trace, Eq.(3), the contribution of In) to Zpro; is
ePI'N h (nle- f3H In). Hence we can ensure that Z =
Zpro; if we choose

3. Comments and Conclusions
Some comments: First, for the special case of

half-filling, when one can do without the gener­
alized kinetic energy, some of the above formulae
have already appeared in literature2. Second, the
expectation value of any operator defined in the
projected Hilbert space can be computed using the
unrestricted trace, if the operator is first particle­
hole symmetrized. Third, one can show that at half
filling the above formulation leads to half-statistics
Matsubara frequencies for holes and doublons in
our Greens-function approachl .
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(7)2sina,8= ePI'.

Z = Tr (p e- f3H e[i(1f/2-aP) 2:;(n or +n;l-l)])p-h .
(6)

Here the trace is over the unrestricted Hilbert
space (including Ill) on each site). We will show
that Z = Zpro; whenever a given Hamiltonian has
i~entical dynamics for holes and doubly occupied
SItes. The system can be pushed to half-filling by
setting a = 0 in Eq.(6). Hence a plays the role
of a chemical potential, as we will see more clearly
below.

The extra exponential in Eq.(6) is quite un­
like approaches in which a constraint such as
niT + nil = 1 is enforced by an expression like
Jo

21f d>..(e- PH ei>.(n;r+nij-l»). In our approach, a

particular state (Ill) here) is unwanted. Because
of th~ H~miltonian's particle-hole symmetry, the
contnbutlOn of the unwanted state combines with
the contribution from 10) so as to give Zpro;'

Now we will show that Z = Zpro;' Let In) be
a state which is in the projected Hilbert space.
In general In) has some singly-occupied sites and
some vacant sites. In the unrestricted Hilbert
space there exists another state in which one of
these site is doubly occupied instead of being va­
cant. These two states have the same matrix el­
ement (nIPp_ h e- f3H In), by virtue of the particle­
hole symmetry of H. This is most easily seen in
a path integral expansion. By construction the
propagation, i.e. the dynamics, of the empty' and
the doubly occupied site are identical. At the end
of the path, all holes and the doublon return to
their. original sites. The amplitude for this pro­
cess IS the same as for the holes-only case. For
all charges to be indistinguishable, we must also
let the doublon exchan.e;e places with a hole during

P
p

-
h

= lime(t 2:,ln[(2-<)/2J(C;t C;j+c;lc,r» (5)
<_0

xe(t 2:; In[(2-<)<J(nOln;r+(1-n;d(1-n;r)l),

where ni", = c;." ci",' Define

This operator will allow us to identify the symmet­
ric superposition of 10) and I l n with the holes,
thus reducing the unwanted degree of freedom.
This is simply because both Pp_hIO) and Pp-hlli)
yield /0) + Ill}. Since we want to use it in connec­
tion with a partition function, it might be desirable
to write Pp - h in an exponential form:




