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We have investigated numerically the pairing instabilities of Gutzwiller wavefunctions. 
These are equivalent to a certain form of the resonant valence bond wavefunction. The 
case considered is a nearly half-filled two dimensional band with interactions given by 
a Hubbard model with large on-site Coulomb interactions. We find that the paramagnetic 
normal state is unstable to d-wave pairing but stable against s-wave pairing. The antiferro- 
magnetic state is marginally stable against both types of pairing. These results can be 
explained as an interference effect resulting in enhanced antiferromagnetic spin correlation 
in the paired state. 

I. Introduction 

The unexpected discovery of high T~ superconductiv- 
ity in the Cu-oxides by Bednorz and M/iller [1] has 
aroused unprecedented interest. Right at the outset 
Anderson [2] proposed that the superconductivity 
originated in hole-like carriers introduced by doping 
in a Mott insulating state and developed out of a 
resonant valence bond (RVB) spin state. There are 
numerous other proposals; for a discussion of these 
see Refs. 3, 4. The RVB state was proposed previously 
by Anderson [51 as a description of the groundstate 
of a frustrated 2-dimensional Heisenberg lattice (e.g. 
a triangular lattice). In LazCuO 4 and related materi- 
als the lattice is essentially a 2-dim square lattice so 
that the questions of the competition between the par- 
amagnetic (PM) RVB and antiferromagnetic (AF) 
states as well as the instability of both states to super- 
conductivity when holes are introduced needs to be 
investigated. In this paper we address the latter ques- 
tion. 

Several approaches have been taken by others. 
All are based on transforming the original Hubbard 
Hamiltonian to an effective Hamiltonian which acts 
in the restricted Hilbert space with no doubly occu- 
pied sites. In one type of approach this effective Ham- 
iltonian is treated by a mean field method involving 

a Gor'kov factorization of the Heisenberg spin-spin 
coupling term [6-8]. In particular Baskaran, Zou and 
Anderson and Ruckenstein, Hirschfeld and Appel 
show that in the mean field theory a RVB state can 
be obtained at 1/2-filling and a superconducting state 
in the presence of holes. Zhang [9] has shown that 
this theory predicts that the "extended s-wave" [10] 
and the d-wave state have the same critical tempera- 
ture at 1/2 filling but the d-wave has a higher T~ at 
lower electron densities. However, these calculations 
can be questioned since the condition that the system 
must stay within the restricted Hilbert space without 
double occupancy is only approximately obeyed. The 
physics of the constrained and unconstrained systems 
can be expected to be quite different. 

Recent work by Kivelson, Rokhsar and Sethna 
[11] and by Zou and Anderson [12] proposes that 
a Bose condensation of holes in the RVB state is 
to be identified with the superconducting transition. 

Another approach is based on looking for a 
bound state of two holes in an AF ordered lattice. 
Such binding has been investigated by Takahashi for 
a Heisenberg lattice [13] using a moment method. 
Hirsch [14] has considered the related problem of 
holes in the oxygen states but strongly coupled to 
the Cu-spins. This latter model has been put forward 
by Emery [15]. 
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It is, however, possible to investigate a number 
of these questions by using the variational Monte- 
Carlo (MC) method. This method allows accurate nu- 
merical evaluation of expectation values and matrix 
elements in wavefunctions with strong local correla- 
tions. For example, it has been used to evaluate Gutz- 
willer wavefunctions for the Hubbard Hamiltonian 
in 1-dim by Horsch and Kaplan [161, by Yokoyama 
and Shiba (YS) [17J in 2-dim and for the Anderson 
Hamiltonian by Shiba [18]. Previously we pointed 
out that it was better to work with the effective Ham- 
iltonian when the onsite Coulomb interaction was 
large and examined many properties of the Gutzwiller 
wave-function in 1-dim [191. In this approach the 
conditions on the Hilbert subspace are fully obeyed. 
Very recently YS have used this method to investigate 
the stability of the PM Gutzwiller wavefunction 
against long range AF ordering and indeed find it 
is only in the presence of a finite density of holes 
that the PM state is stable. These authors and Ander- 
son et al. [20] point out that the Gutzwiller state has 
the form of an RVB state - a point we return to 
below. In this paper we examine the stability of both 
PM and AF wavefunctions to Cooper pairing in the 
s- and d-wave channels. Our key result is that a d- 
wave pairing is favored in the PM state but not in 
the AF state, s-wave pairing is not favored. Note a 
number of authors, Lee and Read [271, Ohkawa [221, 
and Cyrot [8] have proposed d-wave pairing in 
high-T~ superconductors, the first-named authors ap- 
proaching the problem from smaller values of U, the 
onsite Coulomb interaction parameter. A scaling 
theory starting from weak coupling also finds d-wave 
superconductivity to be favorable, as shown by Schulz 
[23]. Miyake et al. [24], Scalapino et al. [251, Cyrot 
[261, and Lavagna et al. [27] have all proposed d- 
wave pairing in heavy-fermion systems. 

II. Method 

We consider a nearly-half-filled band of electrons de- 
scribed by a Hubbard model with t /U~  1, where t 
is the overlap integral between nearest neighbor sites. 
We make a canonical transformation to a representa- 
tion where doubly occupied sites are eliminated, to 
first order. Details of this procedure can be found 
in Ref. 19. 
The effective Hamiltonian is 

Hef t = - -  t E (1 -- ni- ~) C + C~,(1 - nj _~) + h.c. 
(i j)  

+ 4(t2/u) s t -  n/4) 
(i j)  

(1) 

in this representation, neglecting terms of higher order 
in the hole density and t/U, ni = ~ ni~. The kinetic en- 

~r 

ergy comes from the hopping of the holes only and 
there is an AF coupling between the electron spins. 
The Gutzwiller wavefunction is defined as 

[06) = PD = 010B> = I ]  (1 -- ni, ni +)[0B) (2) 
i 

where lOB)= H C+,IVAC) is the band ground 
Ikl < kr,~ 

state and P~: o is a projection operator which elimi- 
nates all spatial configurations with doubly occupied 
sites. It has been shown [191 that this wavefunction 
has a very favourable spin correlation energy: for the 
half-filled case, e.g., (0~I S~. Sjl0G)= -0.442 is within 
about 0.2% of the exact value in one-dimension, and 
in two dimensions the value of -0.275 is also lower 
than the value -0.25 in the N6el state. The kinetic 
energy in the less-than-half-filled case also compares 
very well with ground state estimates by other meth- 
ods. We are therefore confident that the Gutzwiller 
wavefunction is an excellent variational candidate for 
the lowest energy state within the class of states lack- 
ing long-range magnetic order. It represents a Fermi 
liquid with a Fermi surface (at general values of the 
filling) which satisfies the Luttinger theorem. It has 
been pointed out by YS (also see Ref. 20) that it is 
also identical to a RVB state of Anderson [2]. We 
repeat the argument of YS here. A general unrenor- 
malized RVB state may be written as 

P,= o(~ a(k) C+t C+k +) u/2 IVAC) (3) 
k 

with ~a (k )=0 .  A particular choice [2] is a(k)= 1, 
k 

k<kv and a (k) - - -1 ,  k>kv.  (We discuss a different 
RVB state, where a(k) has a different form, in Sect. 
IV). The Gutzwiller state corresponds to a(k)= 1, k 
< kv; a(k)=0, k > kv. However, adding a constant to 
a(k) only changes the weight of a spatial configuration 
if it contains doubly occupied sites. Since these are 
projected out at the end anyway, the two forms for 
a(k) lead to wavefunctions which differ only by a nor- 
malization factor. The same argument implies that 
the extended s-wave states, superconducting states in 
which a(k) changes sign, are not distinct from or- 
dinary s-wave states in projected wavefunction. YS 
have given a generalization of [0~) which can have 
AF long range order. In Eq. (2), we substitute c+~ 
by UkC++sgn(ff)VkC~+Qa where Q--(u,n). 2u2=1 
--ek/(e2+A2) 1/2 and 2 z Uk + Vk = 1, where ek is the band 
energy, ek = --2t(cos k~+cos ky), and A is the gap en- 
ergy. Only the lower band states are occupied. For 
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above. For the half filled band, in one dimension, 
A = 0 is the stable state, whereas on the square lattice 
in two dimensions A > 0 and there is AF long-range 
order. The relative stability of the AF ordered state 
with A > 0  and the PM state with A--0 may be in- 
fluenced by the dimerization of phonons. To take this 
effect into account would require us to enlarge the 
Hilbert space and we will not consider that. Other 
effects which can influence the normal-state stability 
are next-nearest neighbor coupling and the presence 
of holes. We will investigate the stability of both nor- 
mal PM and normal AF states against Cooper pair- 
ing. 

This is done by the MC method, which yields the 
relevant operator expectation values. Technical de- 
tails are given in Refs. 16, 18, and 19. The electrons 
are placed on a lattice of L sites with periodic bound- 
ary conditions. L is chosen in the form (j2 + 1) where 
j is an odd integer. This assures that the half-filled 
ground state is not degenerate, and further that the 
Fermi surface consists of 4k-values. This situation is 
illustrated in Fig. 1 for L = 26. We now ask the ques- 
tion: Is this Fermi sea unstable to Cooper pair forma- 
tion? To find out, we take the number of electrons 
to be L - 2 ,  leaving two holes free to move the 
through the lattice. The ground state in the manifold 
with zero total z-component of magnetization is then 
sixteen fold degenerate in the non-interacting case. 
If it is possible to lower the energy by constructing 
a coherent combination of Gutzwiller states in this 
manifold which lowers the total energy including in- 
teractions, then an instability is indicated. It should 
be stressed, however, that the present calculation does 
not yield a good estimate for the binding energy, since 
no real attempt to optimize the wavefunction is made. 
lnstead, a specific form for the a(k) is chosen in which 
a(k) differs from the ground state configuration only 
for the uppermost set of {k} at the Fermi surface. 
Further optimization would involve us with more 
Slater determinants and is hindered by calculational 
limitations. Therefore, the results in this paper should 
not be interpreted as relating to the actual supercon- 
ducting state. Rather, they are to be interpreted in 
the spirit of Cooper's calculations of pair binding, 
indicating only whether or not the normal state is 
stable with respect to the formation of superconduct- 
ing correlations. A poor estimate of the actual super- 
conducting condensation energy is thereby obtained. 
(The Cooper binding energy and the BCS condensa- 
tion energy differ by an exponential factor in the case 
of conventional superconductivity.) 

The wavefunctions we choose are parametrized 
by c(ki), i=  1, 2, 3, 4, where Ikil =kF, and k I =(kx, ky), 
k 2 = ( - k y ,  kx), k 3 = ( - k x ,  -k , ) ,  k3=(k ,, -kx). (See 
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Fig. 1. The upper figure shows the sites in real space used in our 
calculation for total number of sites L = 2 6  enclosed in the square. 
Periodic boundary conditions on the wavefunction are used, with 
periods shown by the arrows. When this lattice is half filled with 
electrons, the non-interacting ground state is non-degenerate with 
the Fermi surface shown in the lower figure as a dashed square 
in momentum space. To form the various wavefunctions described 
in the text, the k states 1 through 4 are taken to be empty 

Fig. 1) We then write 

r~)=ctl~)+c21~Pg)+c31~Pg)+c41~), (4) 

where ]g'~) is the Gutzwiller state (PM or AF) with 
the wavevectors k 1T and - k  1 + vacant, etc. The s-state 
is given by c1=c2=c3=c4=1, and we will consider 
the d-state given by cl = c3 = - c 2  = - c 4  = 1. Their en- 
ergies are to be compared to those of an incoherent 
combination of the same 17%), which represents the 
normal state wavefunction. The energy difference is 
the binding energy of the two holes in the variational 
wavefunction. 
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To obtain reliable results in two dimension it is 0.5 
necessary to do calculations for several different lat- 
tice sizes and extrapolate to the infinite lattice limit. 
All our results are plotted in this way. It is also very AE s 
important to minimize statistical errors. We are calcu- 
lating energy differences so that it would appear to 
be necessary to subtract two numbers which are much 
larger than their difference. The only feasible way to 0,0 
accomplish this with acceptable error is to calculate 
both energies in a single MC run. One can take advan- 
tage of the freedom within the MC method of parti- 
tioning the summand into two factors one of which --" 
determines transition rates, and the other is then mea- 
sured. A full explanation is given in the context of -0.5 
calculating off-diagonal operator expectation values 
in Ref. 19. This enables us to compute the difference 
between normal and superconducting states directly, 
without the need to subtract quantities which have 
individually a large uncertainty. 

III. Results and Physical Interpretation 

To set the stage for our results, we first review the 
underlying energetics of the PM and AF states. For 
the half-filled band, the Hamiltonian (i) reduces to 
a Heisenberg Hamiltonian 

Hn = 4(t2/U) ~. (St-S j -  n i nj/4) (5) 
<i j> 

where ni n i = 1. 
The energies calculated for the half-filled square 

lattice by YS are given in the table, and show that 
the AF state is the stable one. If we now inject a 
small number of holes into the system, the full Hamil- 
tonian (1) must be used. If we keep in mind that the 
energy per bond is 4t2/U times (Si" Sj -1 /4)~2tz /U,  
then we see from the table that the change in spin 
energy per hole is much larger than 8tz/U, which 
is the number one might naively expect from bond- 
breaking arguments. The kinetic energy, on the other 
hand, is not very different from that of a free hole. 
The holes are completely delocalized and therefore 
very efficient at disturbing the bonds between the 
spins. We aim to show that this tendency can be re- 
duced by pairing the holes in d-wave configurations. 

We compute first the spin correlation energy gain 
from the Cooper pairing: 

zlE, = (Osl H, l~ 's )  - (~Oul Hu 10N) (6) 

for a series of lattices having up to 122 sites, with 
HH given by Eq. (5). Note that in the thermodynamic 
limit we can ignore the change in the expectation 
value of the n~nj term. The change in kinetic energy 

-1.0 

I i I I 

_ _ I - P M - S  

I ~ * - ~ A F - S  

(I-i- - -  - PM-D 

I 1 i I 

I/4'i~- ~ i/,d~-g I/4,- ~- 

Fig. 2. Binding energies in units of 4 t2/U for various superconduct- 
ing wavefunctions. P M - S  and A F - S  denote the s-wave states 
formed from paramagnetic and antiferromagnetic normal states, re- 
spectively. P M -  D and A F -  D are the corresponding d-wave states. 
The binding energy is the difference between the spin correlation 
energies in the superconducting and normal states. A negative result 
implies that the normal state is unstable. See Eq. (6) for a definition 
of AE~ 

has also been calculated. We have found in every case 
that this change was very small: zero to within the 
accuracy of the calculation (~ 1%). This is partly due 
to the fact that the four k's we allow for the Cooper 
pair are all degenerate, but this choice does not pre- 
clude kinetic energy airising from the relative motion 
in the pair. That this energy is very small indicates 
stability of the d-wave state for a wide range of values 
of the parameters t and U. For the wavefunction used 
here, the change in spin energy may be taken as the 
total energy change. 

Let us discuss first the paramagnetic normal state. 
Figure 2, together with the extrapolated numbers in 
the table, Rows 4 and 5, shows that there is a strong 
tendency toward binding in the d-wave channel. To 
understand the magnitude of the binding, again take 
a naive localized picture for the holes. The effect of 
putting two holes at random in a half-filled PM lattice 
(see Table 1, Row 2) is to break eight bonds, costing 
an energy (32 tz/u)(si "Sj-  1/4) ~ 17 ta/u relative to 
the half-filled state. The energy saved by putting the 
two holes in the d-wave paired state relative to the 
normal state thus corresponds to about 1.5 bonds. 
This is a large number. The pairing energy gained 
in this way is larger than one could get by localizing 
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Table 1. Summary  of data and results. PM and AF  denote paramag- 
netic and antiferromagnetic wavefunctions. Row 1 is the kinetic en- 
ergy of a single hole introduced into a half-filled lattice. Row 2 
is the spin correlation energy per bond in the half-filled lattice. 
Row 3 is the change in this quanti ty summed over all bonds when 
a hole is introduced into the half-filled state. Row 4, 5 are the 
change in spin energy when pairing correlations are introduced into 
the normal  state wavefunctions, taking a Heisenberg interaction. 
Rows 6, 7 are the same change if the x and y components  of the 
interaction are omitted. Rows 8, 9, and 10 are the nearest neighbor 
hole-hole correlation functions. The numbers  in Rows 2 and 3 are 
taken from Ref. 17. In rows 2 through 7, to convert to energy 
units, multiply by 4 t2/U, the energy per bond 

PM AF 

1. Kinetic energy/hole - 2.72 t - 2 . 5 2  t 

2. ~ (S , .S j ) /bond  - 0.27 - 0 . 3 2  
< i j> 

3. ~ (S,.Sj>/hole + 19.2 - 
<i j> 

4. AEs ford-wave - 0.5 __+0.2 0.0 +0.05 
5. AE, fors-wave + 0.3 0 . 1  0.0 +0.05 
6. AE z for d-wave - 0.17_+0.07 --0.22_+0.1 
7. AE~fors-wave - 0.1 __+0.03 +0 .08+0.02  
8. g in normal  state 1.1 _0.1 1.6 _+0.2 
9. g in d-wave state 1.1 __+0.1 6.9 +0.2 

10. g i n  s-wave state 1.1 _0.1 0.0 -+0.2 

the holes on adjacent sites in the pair, ignoring phase 
relationships, and arguing that the number of broken 
bonds is thereby reduced. This only saves one bond 
and of course would cost considerable kinetic energy 
in the relative hole motion, far more than is present 
in our wavefunction. 

The conclusion is inescapable that there is quan- 
tum-mechanical interference associated with the 
phases of the hole wavefunctions which gives rise to 
a surprisingly extensive rearrangement of the spins. 
Any picture, such as the fewer broken bonds picture, 
which ignores these phases, will not lead to the large 
energy actually involved. Further evidence for this 
point of view is offered by the data for the s-wave 
state, for which the effective interaction is positive. 
We discuss the interference question and the differ- 
ence between s- and d-wave states in more detail at 
the end of this section. 

The AF normal state, in contrast to the PM-state, 
is marginally stable to both s- and d-wave supercon- 
ductivity. Figure 2 shows that there is no energy asso- 
ciated with the change due to Cooper pairing in the 
infinite-lattice limit. This is in agreement with the 
work of Takahashi [13] who studied the problem 
of two holes in an AF background by a variational 
method, and found no binding energy. In Fig. 3 we 
plot the correlation of only the z-components of spin 
AE~ and the extrapolations are given in the table, 
Rows 6 and 7. This would be proportional to the 

0.5 [ i i [ 

" . - -  A F - S  ..e I I  �9 

0 . 0 -  

- 0 . 5  I , , I 

V I,/r~ v, /~ v / u  
Fig. 3. Binding energies for the AF  superconducting states for an 
Ising interaction in units of the Ising coupling constant. Error bars 
for the s-wave state have been omitted for clarity. For each lattice 
size they are the same as those for the d-wave state 

total energy if the interactions were Ising-like. (This 
is only possible if there is very strong spin orbit cou- 
pling in the two-dimensional layer. For copper and 
oxygen that is very unlikely.) It is interesting that 
binding can take place for this case but only for the 
d-wave pairing. This indicate that arguments for bind- 
ing [8, 14] based on the ability of the AF lattice 
to heal itself after two holes pass through, but not 
one, are valid for the Ising case. The Heisenberg inter- 
action, on the other hand, gives the lattice without 
holes the ability to heal itself because of spin flip terms 
and apparently this is enough to unbind the pairs. 
This effect shows up in the nearest neighbor hole-hole 
correlation function: 

g=L ~ <@1(1 -hi)(1 -nj,)l@>. (7) 
(i j )  

This measures the probability that the two holes are 
adjacent and is normalized to unity for random posi- 
tioning of the holes. For the three AF cases it is plot- 
ted in Fig. 4, and results given in the table, Rows 
8-10. There is already an enhancement from random- 
ness in the normal state, as was found previously in 
the one-dimensional normal PM state [19]. There is 
a very large enhancement in the d-wave case, which 
is the right superconducting wavefunction for Ising 
interaction. Some of the condensation energy must 
clearly come from the fewer broken bonds effect for 
this case, as well as from the absence of a healing 
effect. The s-wave wavefunction has less chance for 
adjacent holes even than the normal state; it seems 
likely that this accounts for at least part of the nega- 
tive binding energy of this state. 
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Fig. 4. The nearest-neighbor hole-hole correlation function is plot- 
ted as a function of the lattice size L for the AF  states. A value 
of 1 corresponds to random placement of the holes 

/ / . I t  " t  

/ /~ . , .S .  .'r 

I i 

[ I I I 
/ 

~/ PM-D 
/ 

l / 
/ 

/ 

/ / P M - N  ~" Ar 
/ / 

/ //d ,,~./ l . r / P M _ S  

/ 

I i I 

7,/Sg I/,/C 
Fig. 5. Hole-hole correlation function for different lattice sizes for 
the PM states 

The PM hole-hole correlation functions are plot- 
ted in Fig. 5. Here there are no indications that the 
spatial correlations are enhanced in the supercon- 
ducting phase, either in the stable d-wave state, or 
in the unstable s-wave state. The phasing of the hole 
wavefunctions is clearly the crucial mechanism at 
work. This is a far more subtle physical phenomenon 
than the fewer broken bonds effect, but our results 
show clearly that this completely quantum-mechani- 
cal mechanism is the dominant  factor at work in pro- 
ducing the d-wave instability for the PM system. 
Strong spatial correlations are not expected since we 
have paired holes in the outermost shell of k states, 
which corresponds to a long correlation length. How- 
ever, we have demonstrated that such correlations 
are not crucial for having a large spin correlation 
energy. This fact also means that the pairing mecha- 
nisms is likely to remain effective even when the long- 
range Coulomb interaction is added to the problem. 

This would change the Hamiltonian of Eq. (5), e.g., 
the coefficient of the final term would become posi- 
tive. It is necessary to consider this effect, since the 
usual downward renormalization of the long-range 
Coulomb pseudopotential in electron-phonon super- 
conductors due to mismatch of time scales will not 
take place in the present system. If the pairs are not 
tightly bound in space, as indicated by our results, 
then the long range repulsion may not greatly sup- 
press the pairing instability. 

The interference effect arises as follows. Consider 
a spin configuration which is AF ordered. Let the 
up (down) spins belong to the set Ri (R'i), where Rix 
+ R~y =even,  R~x+ R'iy = odd. The lattice constant is 
taken equal to one. The weight of such a configura- 
tion in the PM superconducting Gutzwiller wavefunc- 
tion is proportional  to 

I c l r? r?  + c 2 r2  r2 ~ + c a r2  r3 ~ + c 4 r2  r212 (s) 

where F] is defined as the Slater determinant whose 
elements are of the form exp( ik fRi )  with kj the set 
of all k's in the Fermi sea except k~.F~ + is similar; 
it contains instead the R~ and excludes - k ~  instead 
of k 1. Now, with the spin configuration fixed, com- 
pare F] and F~. They differ only in one column, 
namely FI* includes a column exp(ik2.R3, while F2 ~ 
includes a column exp(ik~. R3. The two matrices are 
otherwise the same. However 

k z = k l + Q ,  Q - - - -~(~ ,  x). 

Hence 

exp (i k 2 - Ri )  = exp (i k t" R3"exp [i rc (R ix + Riy)] 

= exp(ikl .  R 3 

and F] = Fz ~ . Similarly, F~ * = -F2  + . Therefore, to max- 
imize the amplitude (8), we need ct = - c 2 .  It is clear 
that this argument can be extended to Ca and c4 and 
leads directly to the d-wave state. The s-wave ct 
=C2=C 3 =C4, on the other hand, gives destructive 
interference for the AF configuration and is therefore 
very unfavorable. The normal state wavefunction by 
definition has no interference; it therefore lies between 
the s- and d-wave states in energy. The relative ampli- 
tudes are in fact 4:2:0 for d-wave:normal:s-wave. In 
the PM case the configuration Ri~+R~y=odd, R}~ 
+ R'ir = even has the same weight as the above config- 
uration and then F] = - F z  * , Ft ~ = F2 ~ , etc., the d-wave 
interference is also constructive. The d-wave state is 
still a spin singlet and thus this argument, which in 
itself ensures only that there will be a large gain for 
the ($7 S~) energy, applies also to the x and y parts 
of the spin-spin interaction. When we apply the argu- 
ment to the AF wavefunctions there is a crucial differ- 
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ence. These are not spin singlets. Even though the 
d-wave gains energy in the z-component of the inter- 
action, it is permitted to, and does, lose energy in 
the x- and y-(spin flip) components. The net gain turns 
out to be zero. 

It is evident that a global change in amplitudes 
is involved in the comparison of the various states. 
This is not surprising since, in the wavefunctions con- 
sidered, the holes are delocalized. This is probably 
a good approximation in spite of the fact that, in 
the AF lattice with a single hole, formation of a spin 
polaron is favored. 

IV. Discussion 

We would now like to compare our results in some 
detail to previous work. Hirsch [14] has proposed 
a binding mechanism within a model of C u -  O layers 
with holes on the 0 sites. His arguments apply also 
to a simple Hubbard model on a square lattice, and 
an AF ground state for the half-filled case. In the 
regime where J~ > Jx, Jy, the J's denoting the effective 
AF couplings he derives a linear attractive potential 
between holes for short separations based on the ob- 
servation that the number of broken bonds in the 
AF lattice is proportional to the separation. This is 
consistent with our results: we also find binding in 
the Jz > Jx, Jy system, and a concomitant enhancement 
of the hole-hole correlation. Contrary to Hirsch, [14] 
however, we find pairing only for d-wave, not s-wave, 
states. Our results also indicate that the binding ener- 
gy becomes zero rather than remaining finite for the 
isotropic Jx =Jy = 4  AF coupling. This is also found 
by Takahashi [13]. 

Our results may also be compared to the RVB 
picture, because, as noted above, the Gutzwiller state 
is a form of RVB state. We should point out, however, 
that we found in previous work [19J that the insulat- 
ing half-filled state did not have a linear dispersion 
relation in one dimension. If we make the identifica- 
tion of a "spinon" with a change in the k-distribution 
in (2) by a shift of one k from below to above the 
pseudo Fermi surface by an amount A k, then this 
excitation was found to have an energy proportional 
to (A k) 2. This is in contradiction to the mean-field 
result of Zou and Anderson [22]. It is important also 
to keep in mind that excitations greated in this way 
are not orthogonal to one another or to the ground 
state. 

In the less-than-half-filled case, the normal state 
considered in this paper is a Fermi liquid with a Fermi 
surface enclosing N/2 k values, where N is the number 
of electrons. It is this state which is unstable to d-wave 
superconductivity. If, on the other hand, one takes 

the view that the introduction of holes into the insu- 
lating state creates topological solitons but leaves the 
k-distribution fixed, then the number of k's involved 
in the wavefunction exceeds N/2. This is perfectly pos- 
sible within the expression (3) for the variational 
wavefunction. It has not yet proved possible to inves- 
tigate such a function with our numerical technique. 
With regard to Bose condensation in general, we have 
concentrated on pairing instabilities, but nothing in 
our results rules out other (perhaps more exotic) insta- 
bilities of the Fermi liquid normal state. 

It would be premature to compare our results in 
a serious way with experiment, since they relate to 
a model which may well be oversimplified. We only 
wish to point out that LazCuO 4 has been found to 
be antiferromagnetic under some circumstances [28]. 
Antiferromagnetism and superconductivity never 
seem to occur in the same sample. This agrees with 
our finding that the PM, but not the AF, wavefunc- 
tion has a superconducting instability in the presence 
of the physically realistic isotropic spin-spin interac- 
tion. 

The calculations presented here can be extended 
in several directions, d-wave states of different symme- 
try should be investigated, as well as more general 
superconducting wavefunctions in which the momen- 
tum distribution is more strongly modified. Particu- 
larly interesting would be to discover what effect dop- 
ing (NIL ratio, in our notation) has on the supercon- 
ducting instability. 

In summary, we have investigated the properties 
of variational Gutzwiller-type wavefunctions for the 
Hubbard model on a square lattice, concentrating on 
the non-degenerate nearly half-filled band. For wave- 
functions which have AF long range order no energy 
is gained by condensation into a superconducting 
state. If an Ising-like AF coupling is added to the 
effective Hamiltonian, then d-wave superconductivity 
is obtained. Paramagnetic wavefunctions are unstable 
to d-wave superconductive pairing, s-wave supercon- 
ductivity is unfavorable for all possible normal states. 
The main physical effect at work is constructive inter- 
ference between different hole wavefunctions in the 
d-wave state. 
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