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A phenomenological extension of the model of almost localized fermions to 
finite temperatures is presented. It is used to calculate thermodynamic properties 
of the normal state of 3He. No new adjustable parameters are introduced and 
the effective interaction strength is the same as used by Vollhardt. A good 
qualitative description of the crossover from Fermi liquid to classical behavior 
in the specific heat, spin susceptibility, and temperature-dependent pressure (or 
equivalently thermal expansion) is obtained. In particular, key results, such as 
the change in specific heat when the spin entropy saturates and the change 
from thermal expansion to thermal contraction at low temperatures are 
reproduced. 

1. INTRODUCTION 

The model of almost localized fermions proposed for normal SHe by 
Anderson and Brinkman 1 and extensively studied by Vollhardt z gives a 
good description of the thermodynamic functions in the Fermi liquid regime. 
The physical basis for this model is the assumption that 3He is a liquid 
close to localization or solidification. A similar assumption has been dis- 
cussed by Castaing and Nozi~res, 3 who proposed a nearly solid structure 
for the strongly spin-polarized state of 3He. Andreev and Kosevich 4 applied 
a similar description to the higher temperature classical regime. A natural 
question that arises is whether one can extend the almost localized model 
to describe the crossover from Fermi liquid behavior at low temperatures 
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to classical behavior at higher temperatures. Only one adjustable param- 
eter- the strength of the effective short-range repulsion--was needed to 
describe the Fermi liquid behavior at T = 0 K. Our goal is to extend the 
model to higher temperatures without introducing any further adjustable 
parameters. The extension to higher temperatures is essentially phenomeno- 
logical, as indeed is the almost localized model itself, and follows from the 
work of Rice et aL 5 They applied the model to the specific heat and entropy 
of heavy fermion systems. Normal 3He is, however, a more severe text of 
the model, since there are more measurements, namely specific heat (or 
equivalently entropy), spin susceptibility, and pressure at constant volume 
(or equivalently thermal expansion). A unified description of these three 
thermodynamic properties is the goal of this work. 

The thermodynamic properties of 3He are particularly interesting since 
they vary on the scale of a reduced Fermi temperature T*, which is 
considerably smaller than the bare Fermi temperature Tz .  A comprehensive 
set of high-precision data on the specific heat and the specific volume was 
reported recently by Greywall. 6 These data confirm that the properties are 
not simply given by a rescaled free fermion behavior. The explanation of 
these properties has attracted the attention of a number of workers. The 
unusual behavior in the specific heat has been ascribed to an enhancement 
of the effective mass in a limited region of k space near the Fermi wave 
vector due to coherent particle-hole excitations. 7 Others have stressed the 
importance of spin-fluctuation excitations. Brown et  aL 8 have argued that 
the data could only be explained by a strong temperature variation of the 
effective mass due to the decoupling of higher energy quasiparticles from 
low-lying spin-fluctuation excitations. The approach, however, that is closest 
to ours is the recent work of Mishra and Ramakrishnan, 9 who have extended 
the paramagnon, or almost ferromagnetic, model to higher temperatures. 
They discussed first the spin susceptibility and recently the specific heat by 
separating spin and density fluctuations. The former dominate for tem- 
peratures T ~  < TF*. There are two essential parameters in their approach, 
namely a susceptibility enhancement as T ~  0 and a cutoff in k space for 
the spin fluctuations. In the almost localized model the effective interaction 
plays the role of the first parameter, but there is no equivalent of the second 
parameter. Instead, there is a natural cutoff due to the finite bound on the 
entropy of the local spin fluctuations (--kB In 2/3He atom). Thus it is an 
essential condition for the applicability of the almost localized model that 
the anomalous behavior in the specific heat is associated with the bound 
of R In 2 on the spin fluctuation entropy. As we shall see below, 3He fulfills 
this entropy condition, and this fact, together with the explanation of the 
constancy of the ratio of spin susceptibility to specific heat as T~  0 (Wilson 
ratio -4) ,  are definite successes of the almost localized model. 
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The bound of  R In 2 on the entropy was used by Goldstein 1° some time 
ago (i.e. before Landau's  Fermi liquid theory). He proposed a theory of  
liquid 3He based on a separation into spin and nonspin contributions to 
thermodynamic properties. Introducing the notion of an internal field in 
the liquid, he assumed that only those spins N~ that had "freed" themselves 
from this field contributed to the spin susceptibility X = I z 2 N ~ / T  (kB= 1) 
and at the same time yielded a spin entropy S = N~ In 2 because of the 
spin- 1 character of  the 3He atoms. In this way he linked the spin susceptibility 
to the entropy, which in turn allowed him to calculate the specific heat. 
Because of  the bounded entropy, the spin contribution to the specific heat 
was necessarily found to have  a pronounced peak. Goldstein assumed that 
this peak would indirectly show up in the total heat capacity co. Indeed, 
the sharp kink in the co versus T curves, for example, at - 0 . 2  K at high 
pressures, appears  to be due to this very structure. 

In the picture of  almost localized fermions that we propose, the entropy 
is bounded by R In 2 only for temperatures T* <~ T<< U ( U  is the effective 
short-range interaction), because in this temperature range essentially only 
singly occupied lattice sites exist. Note, however, that the behavior for 
T > T* is not simply that of  free fermions. The singlet or density excitations 
have a characteristic energy U and while the coherent Fermi liquid proper- 
ties are lost on a scale of  T*, free fermion behavior is not recovered so 
long as T < U. There are thus two quite different characteristic temperature 
scales in liquid 3He. 

We point out that the aim of our work is to describe the crossover from 
Fermi liquid to classical behavior at T -  T* and that the description of the 
initial corrections to the Fermi liquid behavior  may not be so accurate. 
These corrections have been much studied in the paramagnon model and 
B6al-Monod et al. 11 have shown that the T 2 term in the susceptibility 
accurately obeys a paramagnon scaling law. This is also the case in our 
results; however, the numerical coefficient is considerably larger than in 
the experiment. 

Conceming the specific heat in our model, an analytic expansion in a 
power series in T does not give a T 3 log T term. In the paramagnon model 
such a nonanalytic term was found by Doniach and Engelsberg 12 as well 
as by Berk and Schrieffer. ~3 Later it was shown by Pethick and Carneiro 14 
that the T 3 log T term can be computed within Landau Fermi liquid 
theory. While in paramagnon theory the T 3 log T contribution should only 
be observable at very low temperatures, the recent measurements by Grey- 
wall 6 seem to indicate* that such a term persists up to temperatures of  the 

*We should point out that the temperature range of the T 3 log T fit to Greywall's data is 
limited, i.e., less than a decade, and there are substantial deviations at very low temperatures 
due to experimental uncertainties. 
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order of 200 mK at low pressures. A theoretical explanation for this has 
recently been put forward by Coffey and Pethick. 15 On the other hand, our 
interest is to describe the behavior of cv on a larger temperature scale and 
to go through the crossover to classical behavior. 

In addition to the spin susceptibility and specific heat we will also 
examine the temperature dependence of  the pressure at constant volume 
P(T)I  v. Usually one considers the volume at fixed pressure, i.e., the thermal 
expansion. Helium-3 is unusual in that at low temperatures there is an 
initial contraction at T ~  < 1 K and an expansion only for T ~  > 1 K. Greywall 6 
has recently presented a comprehensive series of experimental data on this 
point. He presents his data as P(T)I v so that the anomalous expansion 
shows up as a minimum in P ( T )  I v at finite T. In contrast, for free fermions 
this quantity is monotonically increasing. The almost localized model repro- 
duces the minimum and even gives good quantitative agreement as the 
pressure P -  Pc, the solidification pressure. 

The outline of the paper is as follows. In Section 2 we present an 
extension to finite temperature of the almost localized fermion model. In 
Section 3 we discuss the appropriate form of the model for 3He. The key 
point here is the role of higher energy excitations, which we include in the 
simplest possible way, namely as free fermions. Then in Sections 4-6 we 
present the results of  our model calculations for the specific heat and 
entropy, spin susceptibility,and P(T)[  v in the temperature range T ~  < 2.5 K 
and at volumes corresponding to P = 0, 15, 30 bar at T = 0. Finally Section 
7 has some concluding remarks. 

2. GENERALIZATION OF THE ALMOST LOCALIZED 
FERMION MODEL 

We start this section by reviewing the Gutzwiller theory for almost 
localized Fermi systems. A more complete account can be found in the 
recent review by Vollhardt. 2 For the Hubbard Hamiltonian with a repulsive 
on-site interaction U Gutzwiller 16 proposed the following variational 
ground-state wave function: 

~bG({n(k, tr)}, g ) =  l-I [ 1 -  (1-g)n,~ni~]~o({n(k, or)}) (1) 
i 

Here ~Po is the ground state of the uncorrelated system (i.e., a Slater 
determinant) and ni~ is the number operator for site i and spin tr. The 
occupation numbers in ~o have values n(k, cr) = 1 for k < kF and 0 otherwise 
(T= 0). The physical idea behind the ansatz (1) is that, due to the strong 
repulsive interaction, the number of doubly occupied sites is reduced with 
respect to ~o- 
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After minimization with respect to the variational parameter g, Gutzwil- 
ler obtained an approximate expression for the ground-state energy per site 
as 

EG = ~, q~( d, n~)ek~n(k ,  o ' )+  Ud (2) 
ko" 

Here d and n,  are the concentrations of doubly occupied sites and of singly 
occupied sites with spin tr, respectively. The sum over k states is normalized 
to 1. The function q is given in terms of d and n= as 

q,,(d, n~) = {[(1 - n,, - n _ ~ +  d ) ( n ~  - d)]a/2+ [ d ( n _ ~  - d)]1/2} 2 

x [n¢(1 - n ¢ ) ]  -1 (3) 

The factor q renormalizes the kinetic energy in (2) and can be interpreted 
as the enhancement of  the effective mass m* over the bare mass m (q-1 = 
m * / m ) .  Also, the discontinuity of the momentum distribution at the Fermi 
energy is reduced from 1 to q. Extracting the Landau parameters from the 
energy expression (2) leads to a good agreement with experimental results, 
provided the density of  states is chosen properly. We will come back to 
this point in the next section. 

The case of  a half-filled band (n¢ = n_¢ = 1/2) has been studied by 
Brinkman and Rice .  17'18 They found that with increasing U, the fraction of 
doubly occupied sites d decreases from its value of d = ¼ in the uncorrelated 
state to d = 0  at a critical interaction strength uc(=81~ol, with go = 
Y~k<kF,¢ eke), i.e., the fermions localize in the Mott sense. This half-filled 
band case in the almost localized limit ( U <  Uc, U c -  U<< Uc) has been 
used by Anderson and Brinkman ~ and Vollhardt 2 to describe the static 
properties of  normal 3He at zero temperature. We will see that, as tem- 
perature fluctuations of the occupation number become important, we have 
to allow for a filling factor slightly less than 1, i.e., n ¢ + n _ ¢ =  1-3~ with 
3 << 1. In this case the system never becomes completely localized, but for 
large U, d -~ 0 and q ~ 23. 

Most recently the assumption of a half-filled band (3 = 0) for T = 0 at 
all pressures was examined by Vollhardt et al. 19 by using a model with 
variable density. They showed that, on energy grounds, an increase of  the 
external pressure (i.e., approaching the transition) leads to 3 ~ 0, justifying 
the assumption made earlier in ref. 2. 

An extension to higher temperature has been presented recently by 
Rice et al. 5 Excited state wave functions can be obtained from the Gutzwiller 
form (1) by varying the occupation numbers {n(k, o-)}. The internal energy 
can then be calculated in the same way as in (2). To obtain the free energy 
we need an expression for the entropy. For this purpose we must recognize 
that the set of  excited states determined by varying { n (k, o')} are not mutually 



200 K. Seiler, C. Gros, T. M. Rice, K. Ueda, and D. Vollhardt 

orthogonal, because of the projection operator. On the other hand, we can 
easily calculate the total number of independent states with a fixed value 
of d, using a real space representation. In the case 6 = 0 this number varies 
continuously from 4 per site in the uncorrelated state (d = 1) to 2 per site 
in the almost localized limit (d ~0) .  In addition we know from Landau 
Fermi-liquid theory that the low-energy excitations are quasiparticles whose 
entropy is determined by the free fermion entropy formula. This leads to 
the following ansatz for the entropy: 

S = - ~  w(k, d, n~){n(k, o') In n(k,o-) 
ko- 

+ [ 1  - n (k ,  o')] ln[1 - n (k ,  or)]} (4) 

Here w(k, d, n~) is a weighting function in k space to account for the 
above-mentioned overcompleteness. 

The occupation number is obtained by minimizing the free energy F, 

F =  Y~ q,~ek,~n(k, o')+ Ud - TS (5) 

with respect to {n(k, o')} and we get 

n(k, o-) = {exp[q~(ek= --/z~)/w(k, d, n=) T] + 1} -a (6) 

Note that the quantity w(k, d, n,~)q~,' in (6) plays the role of a k-dependent 
effective mass. On physical grounds we can derive three constraints on the 
w-function: 

1. To reproduce Landau theory we impose the constraint on w that 

lim w(k, d, n~) = 1 (7) 

2. For sufficiently high temperatures, i.e., for T >  T* (=qTv) but T<< U 
and q << 1 (almost localized limit) the occupation number n (k, o-) approaches 
the limiting value (1 - 6) /2  and the entropy per site becomes 

S =  ff[ln 4 -  ( 1 - 6 ) l n ( 1 - 6 ) - ( 1 + 6 ) l n ( 1  + 6)] (8) 

with 
~(d, n~)=Y~ w(k, d, n=) (9) 

k 

On the other hand, it is simple to calculate the total number of degrees of 
freedom with fixed values of d and n~ in a site representation (see, for 
example, Vollhardt2). Comparing these two results, we get the following 
entropy sum rule for the weighting function w(k, d, n=): 

(1 - 6 - 2 d )  ln[~(1 - 6)  - d ]  + d In d + (d  + 6) l n ( d  + 6)  
= (10) 

In 4 - (1 - 6) In(1 - 6) - (1 + 6) In(1 + 6) 

In the limit d, 6 ~ O, ~ takes the value 1/2. 
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Therefore we see that on the temperature scale T* a total molar  entropy 
R In 2 is obtained. This is what one expects for an almost localized fermion 

regime. For higher temperatures as T >> T*F one finds 

d ( T )  ~ ½11 + exp( U/2 T ) ]  -1 (11) 

Thus it is only on the higher temperature scale of  U/2 that d-~, 1, as 
expected for free fermions. In this limit S (T)  approaches R In 4, i.e., the 
maximum entropy of fermions in a model with a limited bandwidth. There- 
fore in the interval T* < T < U/2 the system has lost Fermi liquid coherence 
but is not yet a free fermion system, since it is still well below the second 
intrinsic temperature scale. 

3. Later, when discussing the spin susceptibility, we will also derive a 
sum rule for the inverse of  the weighting function: 

W_l(d, no- ) =• (1/w(k, d, no.)) = 2 ( 1 - 2 d - 8 )  
k 

(12) 

Our procedure then is to parametrize the w-function as simply as possible, 
consistent with the three conditions (5), (10), and (12), and with a fixed 
choice of  the w-function to calculate the thermodynamic properties. We 
expect that the results will be insensitive to the detailed form of w-functions. 

A somewhat  similar approach to a finite temperature extension of a 
variational ansatz fi la Gutzwiller was proposed by Spatek eta/. 2° However,  
instead of  choosing a function wk in the expression for S [Eq. (8)], these 
authors used only a single parameter  describing the fraction of itinerant 
particles. We cannot see that the above-mentioned entropy requirements 
(i.e., three conditions on Wk) can be fulfilled by this one parameter.  

3. T H E  M O D E L  F O R  HELIUM-3  

The main problem in applying the almost localized model to 3He is 
the unlimited density of  states of  such a liquid, in contrast to the limited 
bandwidth of the Hubbard  model. Our approach will be to treat the states 
near the Fermi energy as strongly correlated, while the higher energy states 
are considered to be free and uncorrelated. The choice of  which states are 
free and which states are correlated is fixed by the requirement that as T = 0 
the model reduces to the half-filled band model of  Anderson and Brinkman 1 
and Vollhardt)  Therefore we define a cutoff energy Ec such that the number  
of  states with E < Ec is exactly twice the number  of  states with E < EF. 
The states with E < Eo are treated in the almost localized fermion model, 
while those with E > Ec are taken to be free. 
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For finite temperatures the filling factor is reduced from half-filled 
according to 

8(T) = dEf(E)Nf(E) (13) 
c 

Here f (E)  is the Fermi function and Nf(E) is the density of  states (DOS) 
for free fermions. 

There are two problems with the above DOS. First, the s.harp cutoff, 
which was chosen for simplicity, is clearly artificial and a more gradual 
transition from strongly correlated to free would he physically more reason- 
able. Second, an uncertainty lies in the p factor of  this square-root DOS. 
This factor, introduced by Vollhardt, 2 is defined as p = 2]folN(EF). For the 
square-root DOS, p = 1.2, while for the half-ellipse DOS used by Vollhardt, 
p = 1.08. The Wilson ratio, Rw, is very sensitive to the precise value of p. 
Within the almost localized model Rw can be calculated to be (1 - 3 p / 4 )  -1 
at the localization transition. The experimentally measured value of Rw 
corresponds to a value p = 1, while for p = 1.2, Rw = 10. Although it is not 
quite clear which lattice structure would represent the short-range order in 
3He best, we will also choose a half-ellipse DOS for the strongly correlated 
states around the Fermi energy. It  should be noted 2 that any bounded,  
symmetric DOS that somehow resembles a half-ellipse (e.g., that for a simple 
cubic lattice) always yields a value for p very close to p = 1.08, i.e., is 
insensitive to the detailed structure of  the lattice. In dimensionless units 
with E F--- 1 the DOS of  the correlated states No(E) is fully determined by 
the two conditions S dE No(E) = 1 and Nc(EF) = Nf(EF). Explicitly, 

Nc(E)=a{1-[(E-1)/A]2} 1/2, 1 - A ~ < E ~ < I + A  (14) 

with A = 8/3~r. 
The free states for E i> Ec are described by the usual square-root DOS 

Nf(E)=~E '/2, E>~ E~ (15) 

The total DOS is shown in Fig. 1. In the following we change the variables 
(k, d, n~) ~ (E, d, 8, m), where t~ = 1 - n,~ - n_~ and m = n~ - n_o- 

For the w-function we make the three-parameter ansatz 

w(E, d, 8) = A e x p [ - ( E  - 1)2/g 2] + B (16) 

A careful examination of the sum rules (5), (10), and (12) shows that w is 
approximately independent of  m. The quantities A, B, and R are functions 
of  d and 8 via the sum rules. From (5) it follows that B = 1 - A .  For a 
discussion of  the energy and magnetization dependence of w in (16) see 
Appendix B. 

We will make calculations for three different molar volumes: 36.84, 
28.86, and 26.14 c m  3. The values of  d at T = 0 were determined by Vollhardt 2 
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/ / f/ 

'/~/// I 

Nf (E) ~ 

i P 

I-A I E c [+A 2 3 (EF=I) 

Fig. 1. The density of states used for the numerical calculations. No(E) is 
the assumed form of the DOS for the correlated states as described in the 
text. Nf(E) describes the free and uncorrelated states. 

by fitting the l inear  term in the specific heat  at each pressure. For  s implici ty  

we put d ( T )  = d(0)  =- do in the tempera ture  range o f  interest,  namely  T =  T* 

but  T<< U. Also,  A and R are kept  constant  as a funct ion  o f  tempera ture .  

We checked  the val idi ty  o f  these approximat ions ,  and,  as discussed below,  

they are not  serious. N o t e  the remarks m a d e  in A p p e n d i x  A and B on the 

app rox ima t ion  d = const.  

The values  o f  the quanti t ies  of  interest  are given in Table  I. 

4. T H E  S P E C I F I C  H E A T  A N D  T H E  E N T R O P Y  

The specific heat  at a constant  vo lume  is def ined by the equa t ion  

cv = T(OS/OT)v,N. Using  the entropy express ion (4), it is s t ra ightforward 

TABLE I a 

V, cm 3 d TF, K A R U VOd/OV 

26.14 0.024 6.23 0.78 0.44 2.60 0.068 
28.86 0.032 5.84 0.87 0.52 2.52 0.075 
36.84 0.050 4.96 1.27 0.77 2.31 0.084 

aA, R, and U are given in units with T F = 1. The value of T F is calculated with the formula 
TF= (h2/2m)(3~2N/V) 2/3= 54.91 V -2/3 K. The stationary condition for the free energy at 
T = 0 leads to U = 81gol(1-4d). 
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to obtain [nk-= n(k, oF)] 

( o )/w cC= • nk(1--nk)(ek--tX) ek--tx+ T k 
k ~  

( 7I = dEN~(E)n(E-bt)[1 - n ( E - t x ) ] ( E  -tz)  

atz  17, 
The superscript c indicates that this is the contribution of the correlated 
states alone. 

Particle conservation requires 

i d E N c ( E ) n ( E - I ~ ) + f  d E N f ( E ) f ( E - I ~ ) = I  (18) 

From this equation we can self-consistently calculate the chemical potential 
tz and 8 for each temperature. Taking the derivative of (18) with respect 
to T then gives a closed expression for OIz/OT: 

TOP. = _ qI~ + I{ (19) 
OT qI~ + I f 

where 
f 

I~= J dENc(E)n(E - /x) [1  - n(E - / z ) ] ( E  -i~)/[Tw(E)] (20) 

I~ = I dE Nc(E)n(E -/~)[1 - n(E - ~) ] / [  Tw(E)] (21) 

I{ and If2 are the corresponding expressions for the free part, i.e., q = w = 1, 
I I + A  d~7 oo ,--A --~ -> SE~ dE, Nc(E ) ~ Ns(E),  n(E - ~) + f (E  - i~). 

For higher temperatures (17) is no longer sufficient, since then the free 
states are partially populated and contribute a considerable amount to the 
total specific heat: 

c s (22) C v = C v +  Cv  

The free part of the specific heat c[  is given by a formula analogous to 
¢I+A oo 

(17) again with q = w - 1 ,  jl_a+S~c, Nc(E)~Ns(E),  and n ( E - ~ ) ~  
f ( E  -/x). 

In Fig. 2 we show a plot of the calculated and measured specific heat 
co for the three different molar volumes (36.84, 28.86, 26.14)cm 3 that 
correspond to the zero-temperature pressures P ( 0 ) =  0, 15, 30 bar. Note 
that there is no additional fitting parameter involved. The only free param- 
eter is do, or equivalently U~ Uc, which was used to give the experimental 
value of c,,/T as T + 0 .  
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Fig. 2. Temperature dependence ofc v ofnorrnal3He 
below 2.5 K for the three molar volumes 36.84, 28.86, 
and 26.14 cm 3 that correspond to the zero- 
temperature pressures P(0)= 0, 15, and 30 bar. (--) 
Experiment (Greywall6); (--) theory. 

It is also interesting to plot  (Fig. 3) the results as cv/T versus T. These 
plots clearly show that  the derivations f rom a linear specific heat  set in at 
temperatures  T<< TF*. This is a reflection o f  the b o u n d  on the spin entropy,  
which causes the spin contr ibut ion to the specific heat  to peak well before 
the en t ropy saturates at TF*. (See also ref. 10.) A similar effect is seen if 
one calculates the specific heat  o f  noninteract ing fermions in a half-filled 
band  with finite width, where the peak  in the specific heat is a factor  o f  5 
below the Fermi temperature.  Returning to the compar i son  o f  theory and 
experiment  for  cv(T), we see a slight peak  in the total specific heat f rom 
this effect, which in the experiment  appears  as a sharp turnover  into a 
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Cv/RT t 
3 P (0) = 0 bar 

_ _  , • 

I 

e 

3 I ~'~ P(O)= 15 bor 

ok 

L X ~..,,, 

. . . . . .  

4 P(O)'- 30 bor 

3 ~ . . . .  EXP 

. . . . .  TH d=do 

~ ....... TH d = d(T) 

2'., 
I 

. . . . . . . .  _~_.~:_.__.._ - _  • _ 

. [ I , I ' K ; 1  .5 I 1,5 2 2.5 T [* 

Fig, 3. Temperature dependence of q,/T of normal  3He below 2.5 K for the 
three molar volumes 36.84, 28.86, and 26.14cm 3 that corresponds to the 
zero-temperature pressures P(0) = 0, 15, and 30 bar. For V = 26.14 cm ~ [P(0) = 
30 bar] we also show the result where all the parameters are calculated self- 
consistently. Note the very narrow regime of constant  cv/T. (--) Experiment 
(Greywall6); ( - - )  theory (d = const); ( . . . )  theory [d = d(T)] .  
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plateau. Clearly this peak is an artifact of our oversimplified treatment of 
the high-energy states. 

Greywall 6 recognizes that the family of  curves [cv(P)-cv(O)]/cv(O) 
for different molar volumes had the peculiar property that they all intersect 
at a single temperature of - 1 6 0 i n K .  We have made a corresponding plot 
of our results in Fig. 4. Although the curves do not intersect in a single 
point, the overall features of the experiment are reproduced. 

For completeness we show the entropy curves in Fig. 5. One can see 
the tendency of the entropy to saturate at the value R In 2 at low tem- 
peratures. Above about 0.5 K the contribution of the free states becomes 
more and more important and the entropy again rises. 

As mentioned before, these calculations were done using the zero- 
temperature values of A, R, and d. To check the validity of this assumption, 
the system of equations OF/Od = 0, particle conservation, and the two sum 
rules (10) and (12) was solved self-consistently for A, R, and d as functions 
of T at P = 30 bar. Figure 6 shows the results for d(T). As temperature is 
increased, d(T) drops initially, i.e., the system has the tendency to localize 
even further to maximize the entropy. A little bit below T = 0.2 K there is 
a sharp minimum. Afterwards d increases and when T >> T* it approaches 
the asymptotic form (11). The effect of this temperature dependence of  A, 
R, and d on the specific heat and on the entropy is not large, as can be 

Cv (P)-'Cv (0) I I I 
Cv(0) 

+0.6 

+ 0.4 

+0.2 

0 

28.9 
27.7 

~ 0 ~  

- 0 . 4  I I I 
0.1 0.2 0.3 T [K]  

Fig. 4. The calculated fami ly  o f  cuGes [c~(P) - c~(0) ] /%(0)  as 
functions of  T at different molar volumes in cm 3. 
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Fig. 6. Temperature dependence of the concentration of doubly occupied sites d, for V = 
26.14 cm 3 [P(0) = 30 bar]. 

seen in the  P = 30 ba r  results  (Figs.  3 and  5). There fore  we have used  the 
s impl i fy ing  a p p r o x i m a t i o n  d ( T )  = d(0)  for  the o ther  pressures .  

5. T H E  S P I N  S U S C E P T I B I L I T Y  

To ca lcu la te  the sp in  suscept ib i l i ty  we start  f rom the fo rmula  

oEF 
~x;' = T m  ~ m:o 

One gets at  once f rom (6) 

2 . . . .  1 =~02qo z nk~ek+~ Oq~ 

_ z - l ~ ( O O o . ~  2 Ek--]'l'o" 
\Ore/ ~ nk~(l--nk,~)ek wk 

+ T_ 1 ~ Oq~ OI.L`" 1 - nk,~ ~_1 Op~ 
O----m q'~ O----m ~ eknk,:,~'Wk 2 ~ o'q,, Orn 

Writ ing  

n = ~ ~ nl,,~, m = Y, 2 trnk~ 
o ' k  crk  

(23) 
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we can calculate the derivative of/x~ with respect to m from the two relations 
Om/Om = 1, On/Om = 0. The result is 

O/x~ o, /2+ (Oq,~/Om) Y k nk~(1 -- nk,~)(ek-- IX,~)/TWk 
- -  --  ( 2 4 )  
Om q~ Zk nk~(1 -- nk,~)/TWk 

Inserting (24) into (23) yields 
2 I Oq[ I c 

2 . . . .  1 a 5 

{ Oq'~2[ (i~)2 rc] 1 
+~-mm]___. L-7~--'4J +--  (25) 

Here 

I~ = f dE Nc(E)n(E - tz)(E - 1) (26) 

I ~ = f  d E N c ( E ) n ( E - t ~ ) [ 1 - n ( E - t z ) ] ( E - 1 ) 2 / [ T w ( E ) ]  (27) 

I~= I d E N ~ ( E ) n ( E - I z ) [ 1 - n ( E - t z ) ] ( E - 1 ) / [ T w ( E ) ]  (28) 

I~ has already been defined in (21). The term with (Oq/am) 2 can be 
shown to be proportional to 32 and can thus be neglected. Therefore our 
final result is 

2r cx--1 02 IC q o  loql 5 ,  1 
I~o~X,) =~m213"t'z ~mm 7 ~-e~  (29) 

The explicit expressions for the derivatives of q with respect to m can be 
obtained from (3). In the limit T = 0 one obtains for the Wilson ratio 

m*/m - P  (30) 

in agreement with the result of Vollhardt 2 [Xo = N(EF)I~g is the bare suscepti- 
bility]. 

For intermediate temperatures T >  T* but still T<< U, n ( E - I ~ ) ~  
( 1 - 6 ) / 2  and therefore ~ I3 ~ I~ = O. We thus obtain a Curie form 

X,~/Zo (1/Wk) 2T  (31) 

In this limit the number of magnetic moments should simply be given by 
the number of  singly occupied sites. This condition is expressed in the sum 
rule (12). 

The measured and calculated susceptibilities (including a small contri- 
bution from the free part of the DOS) for the different pressures are shown 
in Fig. 5. In the high-pressure case also the effect of the temperature variation 
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of A, R, and d is displayed. We can see that our susceptibility exhibits a 
crossover from Pauli to Curie behavior at the renormalized Fermi tem- 
perature, as observed experimentally. 2t The overall agreement between 
theory and experiment is satisfactory, especially when one considers the 
simplicity of the model and the fact that no additional fitting parameters 
were introduced. 

Bral-Monoc et al. 1~ have derived a relation for the initial T 2 corrections 
to the spin susceptibility in the paramagnon theory. They showed that the 
T 2 coefficient is proportional to (Xs/go) 2 and found excellent agreement 
with the experimental results both for this form and even the magnitude of 
the numerical prefactor. We have made a corresponding expansion of our 
results and the details are given in Appendix A. We also find that the 
coefficient of  the T 2 correction is proportional to  (Xs/Xo) 2, o r  T2/(T~) 2 in 
our notation, but the numerical prefactor is considerably larger, by a factor 
of 8, than in the paramagnon theory. (Had we used d = d(m, T) instead of 
d = do = const, for calculating Xs the prefactor would have only differed by 
a factor of  2.5.) This can be observed in Fig. 7, where the initial drop of 
our results is steeper than in the experiment. However, the overall shape 
agrees quite well with experiment. We also point out that in the susceptibility 
the deviations from a rescaled free fermion behavior with T* instead of TF 
are not too large, in contrast to the specific heat or entropy and the thermal 
expansion to be discussed below. The relation of  the T-dependenc, e of Xs 
to the magnetization dependence of the specific heat is discussed in Appen- 
dix B. 

Finally we make some remarks about the relationship between the 
temperature dependence between the entropy and the susceptibility. In 
Goldstein's approach l° the molar entropy S is 

S = (T/~2)xsR In 2 (32) 

From Fermi liquid theory we know that, as T ~  0, 
7r 2 m*/ rn 

S = R~--~p, T; X, = p -2N(EF) i~ -  ~ (33) 

For (32) to be correct in the limit T ~ 0  we need to have 

(1 + F~) -~= ~r2/(3 in 2) 

ThiS yields a value F~ = -0.79, which is rather close to the experimentally 
found value of  0.76 ~< F~ ~< 0.70 ! We remark that a recent result by Castaing 22 
presents an interesting analogy to this finding. He showed that /f there 
existed a random internal field acting on the spins whose distribution had 
a constant density near zero field, then F~ should tend toward a limiting 
value of Fo-a--0.75 aS the solid is approached. In the almost localized 
model one obtains F~ = -3p ,  p _ 1. 
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Fig. 7. Temperature dependence of the spin susceptibility of normal 3He below 2.5 K. 
(--) Experiment (Ramm et  a/Y); (--) theory (d = const); (. . .)  theory [d = d(T)]. 

6. T H E  T E M P E R A T U R E  D E P E N D E N C E  OF T H E  P R E S S U R E  
AT C O N S T A N T  V O L U M E  

The thermal  expansion of  3He at low temperature is anomalous ;  i.e., 
for T <~ 1 K there is actually a thermal contraction.  At higher temperatures  
there is, as usual,  a thermal expansion. The explanat ion o f  this unusual  
behavior  is clearly a challenge to any theory of  the the rmodynamic  properties 
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of 3He. In his recent comprehensive series of experiments, Greywall 6 presen- 
ted data on the temperature dependence of the pressure at constant volume 
rather than the thermal expansion per se and we will therefore calculate 
the former and compare our results with his experiments. 

An anomalous thermal expansion a at low temperatures has been 
found theoretically by Goldstein23; his result a oc K(T)Cv(T), where K is 
the compressibility, is equivalent to assuming that the Griineisen parameter 
remains temperature independent up to and through the plateau region in 
c,,(T). A qualitatively similar result for a has been obtained 24 using the 
Brueckner-Gammel theory. 

We should say at once that the almost localized fermion model is a 
model only for the low-lying excited states of 3He and is not meant, nor 
can it be used as, a model for all the ground-state properties. Thus, we will 
not discuss the pressure-volume relationship at T = 0 K, which involves a 
consideration of the interatomic potential. Instead, we will discuss only the 
changes in pressure as T increases, since these reflect the nature of the 
low-energy excited states. The key parameter is the pressure dependence 
of the d parameter, which controls the specific heat. This we take simply 
from the value of d obtained from the volume-dependent linear specific 
heat coefficient. Since the thermodynamic properties are not very sensitive 
to the detailed shape of the w-function so long as the sum rules are satisfied, 
we neglect the volume dependence of A and R parameters. 

From the expression for the free energy F, it is straightforward to 
calculate the pressure 

P( T) = -(OF/O V)[ T,N (34) 

The effective mass parameter q has a volume dependence given by 

Oq 2 { OV 1-~3 2 2(1-2~-4d)+4[d(d+~)]l/2-~ (1-8-2d)(2d+~)l Od 

where we have also neglected the small corrections from any volume 
dependence of 8. Table I gives the values of Od/O(ln V) obtained by fitting 
to the experimental linear coefficient of the specific heat at various volumes. 
Lastly, the volume derivative of /z ,  the chemical potential, is calculated 
from the particle conservation condition (18). 

The results are shown in Fig. 8. In the limit T--> 0 the entropy is linear 
and S(T)=R(zr2/2)(T/qTF). Using the relationship (OP/OT)v,N= 
(oS/oV)T.N, we get the limiting form of [P (T)-P(O)][v,N as 

[zr'~2"T2[2 Oln 
P(T)-  P(O)= n ~ ]  -~v~-3-O In q )  (35) 

where n is the density of particles. 
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Fig. 8. Yadation of the pressure as a function of 
temperature. Besides the theoretical ( - - )  and 
experimental e (--) curves, the results for free fer- 
mions (m* = m) and for free fermions with rescaled 
mass (m* = re~q) are also shown. 

The vo lume dependence of  q overwhelms the free fermion contribution 
and is responsible for the thermal contraction as T ~  0. This strong volume 
dependence originates in the increase in the model  of  U toward Uc, the 
critical value. At higher temperatures the spin contribution to the entropy 
S (T)  saturates at a value - R  In 2 independent o f  the volume,  and therefore 
at higher temperatures the free fermion behavior dominates. The result is 
a minimum in [ P ( T )  - P(0)][ v,N, in contrast to the behavior of  free fermions. 
In Fig. 8 we see that the position and depth o f  the minimum are reproduced 
reasonably well by the model.  At the smallest molar volume (v = 26.14 cm 3) 
the agreement is better than 1% in P up to T = 2 K. While we expect better 
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Fig. 9. The calculated (dP/dT)[v,N versus T at 
different molar volumes 36.84, 28.86, and 
26.14 cm 3 that corresponds to the zero- 
temperature pressures 0, 15, and 30 bar. (--) 
Experiment (Greywall6); ( - - )  Theory. 

agreement as U ~ Uc, such excellent agreement is somewhat fortuitous for 
our simple model. 

In Fig. 9 we show (dP/dT) I versus T at various molar volumes. 
Greywall noticed f rom lais experimental data that the minima of these 
curves all occurred at the same temperature, namely where the thermal 
expansion coefficient is zero, and where the family of  curves [ c ~ ( P ) -  
c,~(O)]/cv(O) intersect. We see that this feature is well reproduced by our 
results. 

7. C O N C L U S I O N S  

In this paper  we have presented an extension of the model of  almost 
localized fermions to finite temperature. This extension was made in a 
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phenomenological way, but with the use of a number of simple and physical 
constraints. It was achieved without the introduction of additional para- 
meters. The model was tested by comparing three different thermodynamic 
properties, specific heat (or, equivalently, entropy), spin susceptibility, and 
the temperature-dependent pressure (or, equivalently, the thermal 
expansion). An acceptable fit was found simultaneously for all three proper- 
ties throughout the region that covers the crossover from Landau Fermi 
liquid behavior to classical statistics. In the almost localized fermion model 
as a whole there is essentially only one free parameter in the model Hubbard 
Hamiltonian, which is used to describe the low-energy excitations. We 
regard the ability to describe so much with just one free parameter as a 
decided success for the almost localized model. The weakest point of the 
model is undoubtedly the description of the higher energy states as simply 
free states and the abrupt change from strongly correlated to free behavior. 
This was chosen so as to preserve the simplicity of the model, but improve- 
ments could be made here. Another desirable direction would be the 
extension to cover the actual dynamics of  3He, but that requires further 
consideration and is outside the scope of this paper. Finally, we believe 
that the successful description of so much data through this simple model 
is further confirmation of the dominant role of  local spin fluctuations in 
the low-energy excitation spectrum and of the overall physical description 
of 3He as an almost localized or almost crystalline liquid. 

A P P E N D I X  A: L O W - T E M P E R A T U R E  E X P A N S I O N  O F  T H E  S P I N  
SUSCEPTIBILITY 

We want to expand in powers of T integrals of the type 

r + J= de H~(e)n~(e-t z) de Hy(e) f (e - t z )  
d l  - A  c 

:f~deHc(E)nc(e-i~)+O(e -qa/r) (AI) 

where energies are measured in units of Ep and with 

n~(e - /~ )  = 1/{1 + exp[q(e - IX)/w(e) T]} 

w( e ) = B + A e x p [ - ( e  - 1)2/ R 2] 

The method is insensitive to H(e) as long as H(e) goes to zero fast enough 
for e -> -oo. 

We define 

FH(e)= f~oode' H(e'  ) (A2) 
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Partial integration of (A1) yields 

J= f~odeFH(e)n~(e-lz)[l_n~(e_ ) lOfq(e- tx) '~  Ix ]Oe~W(e)T ] (A3) 

As usual we expand Fla(e) around/~:  

Fn(e)=Fn(tx)+H(Iz)(e-lz)+lH'(lz)(e-lz)2+O[(e-lz)  3] (A4) 

With a change of  variables 

Y _ q(e - t2,) 
Tw( e ) ' 

we rewrite (A3): 

(A5) 

with 

i=u/81gol, p=2N (O)lgol 
p'= eFN'~(O)/ Nc(O), p,,: 2 ,, EFNc(O)/N~(O) 

J= dYnc(Y)[1-nc(Y)] ,~o l! a e r i e = , \  q / ] 

One can show that w(e) = 1 + O(T2). Since we are only interested in terms 
up to ~ T 2, we can take w(e) =-- 1 in (A6). So we have a standard expression: 

J = [~ de' H(e') + (~r2/6){H'(/z)[l - 2(A/R2)(I - ~)z] 

+4(I-~)(A/R2)H(~)}(T/T*)2+O[(T/T*) 3] (A7) 

where T is now measured in Kelvins. We see that, to O( .3 ) ,  j is independent 
of A, B, R, i.e., w. 

Using the DOS Nc(e) for H(e) leads go an expansion for the chemical 
potential as ( N ( 0 ) =  3/2EF) 

/z(T) = 1 - 1(7r/2)2( T~ T*)2+ O[( T~ T*) 3] (A8) 

and taking eNc(e) for H(e) gives the specific heat 

c~(T) = R(~r2/2)( T~ T*) + O[( T~ T*) 3] (A9) 

The formula for the spin susceptibility (23) does not have the form 
(A1), but a very similar one. The same procedure can be applied. The main 
difference in the result is that the T 2 term now depends also on A and R. 
We quote here only the result for d = do = const.: 

x(T) 2[ T\29{l_[1/(l+I)]2}+4A/R2_p,,+(p,)2 (A10) 
x(T:O)--I----6~-~F) l--p{l--[I/(l+l)] 2} 
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We will use the half-ellipse DOS, which has p = 32/3~ -2, p ' =  0, and p"=  
-9~r2/64. For the localized limit I = 1 we get 

x(T) ~r2[ T \ 2 / 4 ~  2 [ A \  
x(T=O) 1--~[--~F ) [q)1.6[1"4+1"6"R--1) (Al l )  

We want to compare this result with paramagnon theory, n 

Xp . . . . .  g n o n  1 (A12) 
x ( T = 0 )  12\TF] K~ 

where 1 / K ~ =  x(T= O)/Xo, which tends to 4/q for the localized limit. The 
enhancement of  the quadratic T-term relative to the free fermion value is 
1.6/Ko 4 . The paramagnon result (A12) agrees well with experiment, z*'z5 With 
A = 0.78 and R = 0.44 our T 2 term is a factor 8 too large, but it also scales 
with 1/K 4. (Note that if we had used the full d(m, T) instead of  d = do = 
const, for the calculation of Xs, the T2-term would have only differed by a 
factor of 2.5.) Since our overall results are quite good, the higher terms in 
the expansion soon compensate the T 2 term. 

APPENDIX B: THE MAGNETIZATION DEPENDENCE 
OF THE SPECIFIC HEAT 

In Section VI.D. of  ref. 2 the magnetization dependence of q-1 (the 
inverse of  the discontinuity at the Fermi surface at T = 0) was calculated. 
At T = 0 and magnetization m = 0 one has m*/m = q-1 and hence the result 
was taken as a calculation of the m-dependence of the effective mass m* 

itself. It was found that in the range of interaction strengths valid for 3He, 
q-i  and hence m* increased for increasing magnetization. 

Assuming that this T = 0 result could be used to determine the linear 
specific heat coefficient % Quader and Bedel126 pointed out that it would 
conflict with the behavior deduced from the temperature dependence of 
the susceptibility Xs(T). (Note, however, that these authors did not consider 
the reduction of the density of  states due to the magnetic field when they 
related the results of ref. 2 for m*/m to 3'). Indeed, 3' and Xs can be 
calculated from the free energy F as 

O2 F /I, A O2 F 
3'=-O'T-~ r=o' X~-~m2lm=o (B1) 

and must obey the Maxwell relation go Om/O T = OS/OH which, for a Fermi 
liquid, may be written as 11 

1 
0_~ n=o = 02X* (B2) 

H OT2 T=0 

This relation follows from the fact that F(m,T) may be expanded in a 
power series for small m and T and that the mixed term (am 2 T 2) determines, 
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via (B1), both sides of (B2). Clearly we may use such an expansion of our 
free energy F in (5). If the magnetization dependence of q-1 obtained in 
ref. 2 did apply to y, it would follow that for P~>16bar Oz'r/Om2>O, 
which is in conflict with the experiment via (B2) since, experimentally 
02Xs/O T2lm, r=o < 0. Furthermore, the results of the present paper, which do 
satisfy (B2), give 02Xs/OT2> 0 at all pressures. It remains to explain the 
origin of this discrepancy. 

The expansion of F(m, T) yields the following expression for 3' 

f oF[  O [" oF oF od 
,=-2t7 m=o+7 LTm +  m ]m=o m2} (B3) 

T = 0  T = 0  

=3'o]'1+ 2r2/,, 
qot m k kp (B4) 

with t o =  (zr2/3)N(0), p"=  E2vN"(O), qo=8do(1-2do); here do = d(m =0,  
T = 0) and 

1 

Q qo r=0" 

What is of interest now is the sign of the m2-coefficient in (B4). The 
dominant contribution comes from the A/R2-term. As long as this term is 
present we always have 02T/Sm2<O. Without it the sign of Q becomes 
important. Using the full m- and T-dependent d, i.e., d = d(m, T), one finds 

21211 1 + 1  ] 

This result has already been obtained in ref. 2. In the case that d is kept 
constant, i.e., d = do (an approximation used in this paper for computa- 
tional convenience only), the term Od/O T 2 in (B3) is not present leading to 

1 
Q = I  (1+i )2  (B6) 

which is always positive. 
The term 4A/R 2 in (B4) arises because we have chosen the entropy 

weighting function w(E) as independent of the magnetization m and a 
function only of E --EF, even for m #0.  The choice of w(E) is consistent 
with the very weak dependence of the sum rules (9) and (12) on m. Note, 
that the mE-term of 3' in (B4) (and, correspondingly, the TE-term in X~) 
comes from the m 2 T2-term in F. Such a term goes beyond the obvious range 
of applicability of Landau theory which only discusses corrections to the 
groundsta~e energy up to 2nd order in a perturbation. Since the weighting 
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function w only enters in higher than 2nd order, its choice (and, in particular, 
the choice of the energy dependence) will only affect these higher order 
terms. In fact, if  w was chosen as a function of E - /~= ,  the A/R2-term in 
(B4) would not enter (it only comes in at even higher orders of T). Such 
an energy dependence would correspond to a separate weighting of  two, 
independent Fermi surfaces for up and down spins. As it leads to the same 
m2T2-term as does w - 1 (corresponding to Landau theory) it is equivalent 
to assuming that this term may be calculated within the Landau theory 
itself. In that case (B4) reduces to the result obtained by Vollhardt, 2 who 
in fact relied on this very assumption. (This also proves that the results of 
ref. 2 do not violate a Maxwell relation as stated in ref. 26.) On the other 
hand, the correlations between the up- and down-spin particles are expected 
to mix the energy states in the region of k-space between the two Fermi 
surfaces. Then the weighting function should include all the states between 
E - / z ~  and E - / z ~ ,  i.e., those which are centered around E~ (the Fermi 
energy without magnetization). This is achieved by choosing w as a function 
of E -  Ev. Consequently one obtains (B4) and thus the correct sign for 
02X~/OT 2 at all pressures. 
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