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The random phase approximation for the correlation energy functional of the density functional
theory has recently attracted renewed interest. Formulated in terms of the Kohn-Sham orbitals and
eigenvalues, it promises to resolve some of the fundamental limitations of the local density and
generalized gradient approximations, as, for instance, their inability to account for dispersion forces.
First results for atoms, however, indicate that the random phase approximation overestimates
correlation effects as much as the orbital-dependent functional obtained by a second order
perturbation expansion on the basis of the Kohn-Sham Hamiltonian. In this contribution, three
simple extensions of the random phase approximation are examined; �a� its augmentation by a local
density approximation for short-range correlation, �b� its combination with the second order
exchange term, and �c� its combination with a partial resummation of the perturbation series
including the second order exchange. It is found that the ground state and correlation energies as
well as the ionization potentials resulting from the extensions �a� and �c� for closed subshell atoms
are clearly superior to those obtained with the unmodified random phase approximation. Quite some
effort is made to ensure highly converged data, so that the results may serve as benchmark data. The
numerical techniques developed in this context, in particular, for the inherent frequency integration,
should also be useful for applications of random phase approximation-type functionals to more
complex systems. © 2007 American Institute of Physics. �DOI: 10.1063/1.2795707�

I. INTRODUCTION

Recent years have seen a revival of interest in the ran-
dom phase approximation �RPA� and its extensions, both in
the framework of Kohn-Sham density functional theory1–17

�KS-DFT� and within Green’s function-based many-body
theory for ground state properties.18–22 Within KS-DFT, the
RPA for the energy and response function of the homoge-
neous electron gas played an important role in the develop-
ment of the local-density approximation �LDA� as well as
the generalized gradient approximation �GGA� for the
exchange-correlation �XC� energy functional Exc.

23,24 Cur-
rent interest in the RPA is stimulated by the concept of
orbital-dependent �implicit� XC functionals, in which the XC
energy is represented in terms of the KS orbitals and
eigenenergies.25–29 Within this approach a RPA-type correla-
tion energy functional is most easily formulated on the basis
of the KS response function. Compared to LDA/GGA-type
explicit XC functionals, implicit functionals have several at-
tractive features: �1� The exchange can be treated exactly,
leading to exchange energies and potentials which are free of
self-interaction;30 �2� the long-range dispersion interaction
can be correctly described;1,17,31,32 �3� static correlation ef-
fects can be incorporated even within a spin-unpolarized
formalism.12

A systematic formulation of orbital-dependent XC func-

tionals is possible within KS-based many-body theory, i.e.,
by using the KS Hamiltonian as noninteracting reference
Hamiltonian in the framework of standard many-body theory
�KS-MBT�.27,33,34 In this approach the exact exchange of
DFT emerges as a first order contribution to a straightfor-
ward perturbation expansion in powers of e2. All higher or-
der terms constitute the DFT correlation energy. The lowest
order correlation contribution resulting from perturbation
theory Ec

�2� has been extensively studied for atoms and small
molecules.31,32,35–38 Ec

�2� correctly accounts for the dispersion
interaction31,32 and the corresponding correlation potential
vc

�2� reproduces the shell-structure and asymptotic behavior
of atomic correlation potentials.38 On the other hand, the
magnitude of the energies and potentials resulting from Ec

�2�

overestimates the corresponding exact data significantly.
Moreover, Ec

�2� is found to be variationally unstable for sys-
tems with a very small energy gap between the highest oc-
cupied and the lowest unoccupied molecular orbital37,38

�HOMO-LUMO gap� �as, for instance, the beryllium atom�
and fails to describe chemical bonding in such elementary
molecules as the nitrogen dimer.27 The variational instability
of Ec

�2� can be resolved by resummation of suitable higher
order contributions to infinite order �e.g., in the form of
Feynman diagrams�. The simplest functional of this type is
obtained by resummation of selected ladder-type diagrams,
i.e., the Epstein-Nesbet �EN� diagrams. The resulting func-
tional is not only found to be variationally stable for all
neutral and singly ionized atoms, but also gives more accu-
rate correlation energies and potentials than Ec

�2�.39 However,
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EN-type functionals still face fundamental problems in the
case of degenerate or near-degenerate systems. A more suit-
able partial resummation scheme is needed to establish a
universally applicable, implicit XC functional, where the
RPA and its extensions being the prime candidates.

In standard many-body theory, the RPA is obtained by
resummation of the so-called ring diagrams.40 This concept
can be directly transferred to the framework of KS-MBT.41

On the other hand, in the context of DFT, the RPA can also
be derived from the adiabatic connection fluctuation-
dissipation �ACFD� theorem.42 The ACFD formalism is, for
instance, the conceptual starting point for the recent devel-
opment of van-der-Waals DFT.1 It has also been applied di-
rectly to various systems, including jellium surfaces and
slabs,3 atoms,21,43 small molecules,9,10,15,22 and solids.11,17 All
these calculations have demonstrated promising features of
RPA-based functionals. On the other hand, the results for
atoms,21,43 for which rigorous benchmark data are available,
indicate that the pure RPA overestimates correlation energies
and potentials as much as Ec

�2�.
One is therefore led to consider extensions of the RPA.

The most obvious starting point for extension is the inclusion
of the second order exchange �SOX� contribution. However,
in its pure form it neglects the screening of the Coulomb
interaction, which is the core feature of the RPA. One would
thus expect an imbalance between direct and exchange con-
tributions, when combining the RPA with the pure SOX
term. A fully screened form of the SOX is easily formulated,
following the line of thought used for the derivation of
GGAs.44 The resulting functional, however, is computation-
ally much more demanding than the RPA. For that reason it
is worthwhile to examine alternative modifications of the
SOX term which reduce its net contribution. Given the suc-
cess of the EN-resummation in the context of the complete
Ec

�2�, an EN-extension of the SOX term suggests itself �this
functional is denoted as RSOX in the following�.

The SOX term, be it screened or not, is inherently a
short-range contribution. This raises the question whether it
is sufficient to account for the complete screened SOX in an
approximate fashion, relying on the LDA. In fact, using this
strategy, one can easily include all short-range correlation
effects beyond the RPA.4,6 Clearly, the resulting LDA-type
functional �here labeled as RPA+� is even more efficient than
the RSOX.

In this work, we study the RPA and these simple exten-
sions for a series of prototype atoms and ions, for which
highly accurate reference data are available for comparison.
In order to provide benchmark results a numerically exact,
i.e., basis-set-free, approach is used and considerable empha-
sis is placed on all convergence issues involved. As a by-
product of this strive for accuracy, a highly efficient scheme
for performing the frequency integration inherent in all RPA-
type functionals has been developed. This procedure should
be useful for applications to more complex systems, for
which utilizing more than the minimum number of grid
points for the frequency integration would be too demanding.

A complete implementation of any XC functional re-
quires not only the evaluation of the XC energy, but also the
inclusion of the corresponding XC potential vxc in the self-

consistent calculation. The latter step is quite challenging in
the case of orbital-dependent XC functionals, for which vxc

has to be determined indirectly via the optimized potential
method �OPM�,25–28,30 and, in particular, for RPA-type
functionals.35,38,45–50 Recently, Hellgren and von Barth have
reported the first self-consistent RPA correlation potentials
for spherical atoms, obtained by solution of the linearized
Sham-Schluter equation51 at the GW level.43 However, as
indicated earlier, the RPA is not consistently improving
atomic correlation potentials over Ec

�2�. In the present work
we therefore focus on the perturbative evaluation of all RPA-
type energies, utilizing self-consistent exchange-only orbitals
and eigenvalues. As we will show, the RPA correlation en-
ergy is rather insensitive to the KS orbitals used for its evalu-
ation, which clearly supports this perturbative approach. This
feature, if true in general, will be very important for the
application of RPA-type functionals to more complicated
systems, for which a self-consistent implementation is not
feasible anyway.

The paper is organized as follows. In the Sec. II, first the
RPA correlation energy is formulated in the framework of the
ACFD formalism. In addition, the general result is reduced
to an expression valid for spherical systems. In Sec. III, vari-
ous numerical aspects are discussed, addressing, in particu-
lar, questions of accuracy. In Sec. IV, the RPA correlation
energies for a number of prototype atoms and ions �we will
no longer distinguish between neutral atoms and atomic ions
in the following� are presented and compared to the corre-
sponding exact data. Section V provides a summary. Atomic
units are used throughout this paper.

II. THEORY

A. RPA correlation energy on basis of the ACFD
formalism

Based on the adiabatic connection and the zero-
temperature fluctuation-dissipation theorem,42,52 the exact
KS correlation energy can be written as

Ec = −
1

2�
�

0

�

du�
0

1

d�� drdr�vee�r − r��

�����r,r�,iu� − �0�r,r�,iu�� , �1�

where vee�r ,r��=1/ �r−r�� is the bare Coulomb interaction,
�0 is the KS response function,

�0�r,r�,iu� = �
ia

�i
†�r��a�r��a

†�r���i�r��
iu + �i − �a

+ c.c., �2�

and ��, with �� �0,1�, is the density-density response func-
tion of a fictitious system in which electrons interact with a
scaled Coulomb potential �vee�r ,r��, and simultaneously
move in a modified external potential, chosen such that the
electron density remains identical to that of the fully inter-
acting system with �=1. Throughout this paper we use the
convention that i , j ,¯ denote occupied �hole� KS states,
while a ,b ,¯ are used for unoccupied �particle� states, and
p ,q ,¯ for the general case. �� is related to �0 by a Dyson-
type integral equation,53
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���r,r�,iu� = �0�r,r�,iu� +� dr1� dr2�0�r,r1,iu�

�K��r1,r2,iu����r2,r�,iu� , �3�

where

K��r1,r2,iu� = �vee�r1,r2� + fxc
� �r1,r2,iu� �4�

is the Coulomb and XC kernel.
The RPA correlation energy is obtained from Eq. �1� if

one neglects the XC contribution to the right-hand side of
Eq. �3�. Integrating over � one ends up with

Ec
RPA = �

0

� du

2�
Tr�ln�1 − �0�iu�vee� + �0�iu�vee	 , �5�

where the trace indicates integration over all spatial coordi-
nates. It is often more instructive to rewrite the integrand in
Eq. �5�, denoted as Ec�iu�, as a power series in the Coulomb
interaction,

Ec�iu� = − �
n=2

�
1

n
Tr���0�iu�vee�n	 . �6�

B. Correlation energy beyond RPA

The ACFD theorem provides a natural starting point for
the development of correlation functionals beyond the RPA:
Inclusion of some approximation for fxc in the Dyson equa-
tion �Eq. �3�� automatically yields an extension of the RPA.
Several approximate XC kernels have been introduced in the
context of time-dependent DFT �TDDFT�.54,55 It is, however,
not clear whether an approximate fxc designed to provide a
good description of excited states within TDDFT also leads
to accurate ground state correlation energies.

A more straightforward extension of the RPA, the so-
called RPA+ approach, had been proposed by Kurth and
co-workers et al.4,6 They observed that the RPA provides a
quite accurate description of long-range correlation, but is
inadequate for short-range correlations. On the other hand,
the latter can be very well approximated by a local or semilo-
cal density-based functional �LDA- or GGA-type�,

Ec
RPA+ = Ec,sr

LDA + Ec
RPA, �7�

where the LDA for the short-range contribution Ec,sr can be
obtained by subtraction of the RPA-limit from the full LDA
correlation energy,

Ec,sr
LDA = Ec

LDA − Ec
LDA-RPA. �8�

This approach is supported by the fact that the gradient cor-
rection to the short-range correlation is much smaller than
that to the complete correlation energy.4 Though the RPA+
functional has been used recently to describe the interlayer
dispersion interaction in boron nitride,17 a direct comparison
of the RPA+ with exact results is still missing even for
closed-shell atoms. Using numerically exact RPA correlation
energy available for atoms, we are able to give a unambigu-
ous assessment of the quality of the RPA+ correlation
functional.

In the language of Feynman diagrams, the RPA correla-
tion energy is obtained from the second order direct diagram
by replacing the bare Coulomb interaction by the dynami-
cally screened Coulomb interaction. The dominant contribu-
tion that is missing in the RPA is the SOX diagram,

Ec
SOX = −

1

2 �
ij,ab

�ij 
 ab��ab 
 ji�
�i + � j − �a − �b

, �9�

where the notation

�pq 
 rs� =� d3r� d3r�
�p

†�r��r�r��q
†�r���s�r��

�r − r��
�10�

has been used for the KS Slater integral. Combining the RPA
with the SOX term, one obtains a new functional, denoted as
RPA+SOX. However, one would expect the SOX to over-
correct the error in the RPA, since the Coulomb interaction
enters the SOX term in its bare, i.e., un-screened, form.
Screening can be introduced into the SOX term in a system-
atic way by use of the same, dynamically screened interac-
tion as in the direct term.44 Unfortunately, the resulting func-
tional is computationally much more demanding than the
RPA expression. A technically much simpler way to reduce
the SOX contribution has been suggested in the context of
the second order functional Ec

�2�.39,56 The inclusion of the
direct hole-hole contribution to the Epstein-Nesbet-type lad-
der diagrams into the SOX term substantially improves sec-
ond order energies and potentials, without introducing any
additional computational effort. Although the physical back-
ground of these ladder diagrams is quite different from dy-
namical screening, it seems worthwhile to analyze this “ef-
fective” screening. The resulting correction will be denoted
as RSOX,

Ec
RSOX = −

1

2 �
i,j,a,b

�ij 
 ab��ab 
 ji�
�i + � j − �a − �b − �ij 
 ij�

. �11�

C. RPA correlation functional for spherical systems

In the case of spherical systems, the KS potential only
depends on the radial coordinate r, vs�r�=vs�r�, and each KS
orbital can be written as the product of a radial orbital and a
spherical harmonic Ylm�� ,	�,

�k�r� → �nlm�r� =
Pnl�r�

r
Ylm��,	� , �12�

where n, l, and m are the principle, angular, and magnetic
quantum numbers, respectively. The Pnl are solutions of the
radial KS equation,

�−
1

2
� d2

dr2 −
l�l + 1�

r2 
 + vs�r��Pnl�r� = �nlPnl�r� . �13�

Two-body functions such as the Coulomb interaction and
�0 can also be decomposed according to the spherical sym-
metry. To simplify notations, we use the following decompo-
sition convention. The Coulomb interaction is expanded as
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vee�r,r�� = �
L=0

�
4�

2L + 1
vL�r,r�� �

M=−L

L

YLM��,	�YLM
* ���,	�� ,

�14�

where

vL�r,r�� ª r

L /r�

L+1, �15�

with r
=Min�r ,r�� and r�=Max�r ,r��. The response func-
tion �0 can be written as

�0�r,r�,iu� = �
L=0

�
2L + 1

4�

�0L�r,r�,iu�
r2r�2

� �
M=−L

L

YLM��,	�YLM
* ���,	�� . �16�

The L-dependent radial response function �0L�r ,r� , iu� can
be calculated utilizing the radial orbitals,

�0L�r,r�,iu� = − �
ia�

CL;ia�Dia��u�
ia��r�
ia��r�� , �17�

where

CL;ia� ª
�2li + 1��2la + 1�

2L + 1
�li la L

0 0 0

2

, �18�

Dia��u� ª
2��a� − �i��

u2 + ��a� − �i��2 , �19�


ia��r� ª Pi��r�Pa��r� . �20�

Using the multipole expansion of both vee and �0, the
building block of the RPA correlation energy Tr��0v	 is be
obtained as

Tr��0v	 = �
L

�2L + 1��
0

�

drdr��0L�r,r�,iu�vL�r�,r� .

�21�

There are two options for the calculation of the radial inte-
gral in Eq. �21�.

1. Real space approach

In this approach, �0L�r ,r�� is calculated on a discrete
radial mesh, which allows to evaluate Eq. �21� by direct nu-
merical integration,

Tr��0v	 = �
L

�2L + 1��
i,j

w�ri�w�rj��0L�ri,rj�vL�rj,ri�

= �
L

�2L + 1��
i,j

��̃0L�i,j�vL� j,i

= �
L

�2L + 1�Tr��̃0LvL	 , �22�

where wi denotes the radial integral weight at mesh point i.
In case of powers of Tr��0v	 one has

Tr���0v�n	 = �
L

�2L + 1�Tr���̃0LvL�n	 . �23�

The sum over n in Eq. �6� then leads to

Ec�iu� = �
L

�2L + 1�Tr�ln�1 − �̃0LvL� + �̃0LvL	 . �24�

2. Orbital-product space approach

In this second approach one inserts Eqs. �16� and �17�
into Eq. �21�. Using the radial Slater integrals

RL;ia�,jb�� ª �
0

�

dr�
0

�

dr�
ia��r�vL�r,r��
 jb���r�� , �25�

one finds

Tr��0v	 = �
L

�2L + 1��
ia�

CL;ia�Dia��u�

�� dr� dr�
ia��r�vL�r,r��
ia��r��

= − �
L

�2L + 1��
ia�

CL;ia�Dia��u�RL;ia�,ia�. �26�

With the definitions

VL;ia�,jb�� ª
�CL;ia�RL;ia�,jb��

�CL;jb��, �27�

SL;ia�,jb�� ª − �Dia��u�VL;ia�,jb��
�Djb���u� , �28�

one ends up with

Tr��0v	 = �
L

�2L + 1��
ia�

SL;ia�,ia� = �
L

�2L + 1�Tr�SL	 .

�29�

One can furthermore show that

Tr���0v�n	 = �
L

�2L + 1�Tr��SL�n	 , �30�

so that

Ec�iu� = − �
L

�2L + 1�Tr��
n=2

�
�SL�n

n �
= �

L

�2L + 1�Tr�ln�1 − SL� + SL	

= �
L

�2L + 1��ln�Det�1 − SL�� + Tr�SL	� . �31�

The final expressions for Ec
RPA are quite similar in the

real-space and orbital-product-space approaches, but their
numerical efficiency can be very different, depending on the
size of the system. In the real-space approach, the dimension
of the matrix involved is determined by the number of mesh
points used for radial integration, Imax. As Imax is never larger
than a few thousand even for heavy atoms, the resulting
memory requirement is quite low. On the other hand, �0L

needs to be constructed on the radial mesh for each fre-
quency, which can be very cpu-time-intensive. The situation
is quite different in the case of the orbital-product space ap-
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proach. Here the dimension of the matrix involved is given
by NoccNvir, where Nocc denotes the number of occupied or-
bitals and Nvir is the number of unoccupied orbitals taken
into account. NoccNvir can be easily as high as tens of thou-
sands. However, the matrix VL �Eq. �27�� is independent of
frequency and can be calculated in advance and stored in the
memory. Limitations of the available memory can be circum-
vented by taking advantage of the fact that, for given L, VL

and SL are quite sparse �usually the ratio of nonzero elements
is less than 1%�. One can therefore use standard sparse ma-
trix techniques to reduce the storage requirement and accel-
erate the computation of the determinant.

III. NUMERICAL DETAILS

A. Hard-wall cavity approach

The RPA correlation energy depends on the occupied as
well as on the unoccupied KS states. For free atoms, the
spectrum of the unoccupied states includes both discrete Ry-
dberg states and continuum states. However, the handling of
continuum states in the evaluation of the correlation energy
is nontrivial.57 Moreover, the presence of continuum states
causes additional problems in the context of orbital-
dependent functionals: One does no longer find a solution of
the corresponding OPM equation which satisfies the standard
boundary conditions for the correlation potential.58 To re-
solve this problem, we developed a hard-wall cavity
approach,38,56,58 in which the KS equation is solved on a
discrete radial mesh with hard-wall boundary conditions im-
posed at a finite but large radius Rmax. The same approach is
used in the present work.

Its crucial parameters are the cavity radius Rmax as well
as the energetically highest state �characterized by its prin-
ciple quantum number nmax� and the highest angular momen-
tum lmax included in sums over virtual states. In the follow-
ing, neutral Ar is used for a systematic convergence study
with respect to Rmax, nmax, and lmax.

We first consider Rmax. Rmax has to be chosen so large,
that all ground state properties, and, in particular, the corre-
lation energy, do no longer change when Rmax is increased
further. However, any increase of Rmax directly affects the
spectrum of the positive energy states, i.e., the density of
states. In order to keep the space available for virtual exci-
tations constant, when increasing Rmax, one therefore has to
fix the energy �max of the highest unoccupied state nmax taken
into account. In the case of very high-lying virtual states one

has a simple relation between Rmax and �max, resulting from
the fact that high-lying states are no longer sensitive to the
detailed structure of vs,

�max � � nmax

Rmax

2

. �32�

The space available for virtual excitations is therefore kept
constant, as soon as the ratio nmax/Rmax is fixed. Table I
shows the values of Ec

RPA for Ar obtained with different Rmax,
but fixed nmax/Rmax=10 bohrs−1, which corresponds to an
energy cut-off of about 500 hartree. For comparison, the cor-
responding exchange energy and the eigenvalue of the high-
est occupied orbital �HOMO resulting from exchange-only cal-
culations are also listed. One observes that Ec

RPA is less
sensitive to Rmax than the exchange energy, which is consis-
tent with the fact that the length scale related to the RPA
correlation energy is smaller compared to that of the ex-
change.

Argon is the heaviest atom considered in this work. We
have also made systematic convergence tests for other less
compact atoms such as Na and Mg. For all atoms considered
in this work, the choice Rmax=10 bohrs leads to errors less
than 1 mhartree.

With Rmax fixed, one can now examine the convergence
of Ec

RPA with respect to nmax and lmax. Tables II and III show
Ec

RPA for Ar obtained with different nmax and lmax. In general,
the absolute value of Ec

RPA converges quite slowly with re-
spect to both parameters. The slow convergence with respect

TABLE I. Convergence of Ec
RPA, the exact exchange energy, and the eigen-

value of the highest occupied KS orbital ��HOMO� obtained by self-consistent
exchange-only calculations for Ar for different cavity radii Rmax �with
nmax/Rmax=10 bohrs−1, lmax=4, Rmax in bohrs, and all energies are in har-
tree�.

Rmax −Ec
RPA −Ex �HOMO

5 1.0023 30.2059 0.5772
8 1.0027 30.1749 0.5909

10 1.0028 30.1747 0.5908

TABLE II. Convergence of full Ec
RPA �Column 3� and Ec

RPA within the frozen
core approximation excluding virtual excitations of the 1s, 2s, and 2p elec-
trons �Column 4� of Ar with respect to nmax �with Rmax=10 bohrs, lmax=4,
and all energies are in hartree�.

nmax �max −Ec
RPA −Ec

RPA �FC�

25 25.1 0.6840 0.3961
50 111.9 0.9097 0.3980

100 471.2 1.0028 0.3980
150 1077.6 1.0273 0.3980
200 1930.8 1.0354 0.3980
250 3030.9 1.0384 0.3980
300 4377.6 1.0398 0.3980
350 5951.9 1.0399
400 7754.8 1.0400

TABLE III. Convergence of full Ec
RPA �Column 3� and Ec

RPA within the
frozen core approximation excluding virtual excitations of the 1s, 2s, and 2p
electrons �Column 4� of Ar with respect to lmax �with Rmax=10 bohrs, and
nmax=100, and all energies are in hartree�.

lmax −Ec
RPA −Ec

RPA �FC�

2 0.7661 0.2875
4 1.0028 0.3980
6 1.0431 0.4185
8 1.0529 0.4241

10 1.0562 0.4262
12 1.0574 0.4271
14 1.0580
16 1.0582
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to nmax mainly originates from the innermost shell—
unoccupied states with high energies are only important for
the description of virtual excitations of the highly localized,
low-lying core states. In practice, fortunately only energy
differences related to the valence electrons are really rel-
evant. One would thus expect to achieve high accuracy for
these energy differences with much more moderate values
for nmax. This suggests to rely on the frozen core �FC� ap-
proximation, in which excitations from core levels are ex-
cluded. Tables II and III demonstrate that the FC approxima-
tion for Ec

RPA converges much faster with increasing nmax.
Even for a quite moderate nmax of 25, corresponding to
�max�25 hartree, Ec

RPA is already converged to an accuracy
of 2 mhartree. On the other hand, the convergence behavior
of Ec

RPA with respect to lmax is not improved by the FC ap-
proximation. As one of the main aims of this work is to
provide benchmark results for a set of prototype atoms, most
results reported in this work are obtained without evoking
the FC approximation. The results reported in the next sec-
tion are obtained for nmax=300 and lmax=14, which ensures
an accuracy of 1 mhartree for Ar and better for all lighter
atoms.

B. Frequency integration

Any calculation of RPA energies involves two time-
consuming steps: The first is the evaluation of all Slater in-
tegrals involved, i.e., of the matrix RL, Eq. �25�. In the
present work the Slater integrals are calculated by numerical
integration on the radial grid, using standard finite differ-
ences methods. Once RL is available, the second step is per-
forming the frequency integration in Eq. �5�. In order to un-
derstand the most appropriate way to do this frequency
integration is for us to consider the integrand for some pro-
totype atoms. Figure 1 shows u4Ec�iu� for He, demonstrating
the fact that Ec�iu� falls off as u−4 for extremely large u.

This behavior can be easily understood on the basis of
Eq. �19�: For frequencies beyond the maximum excitation
energy ��=�a�

max−�i� included in the calculation �or provided
by the basis set� Dia��u� and thus SL�u� decay as u−2 which
allows a perturbative evaluation of Eq. �31� in powers of
SL�u�, with the second order term dominating the resulting
Ec�iu�.

On the other hand, for the more important range of large
frequencies less than �� a decay close to u−3 is found, as
shown in Fig. 2.

The same behavior is observed for each individual shell,
as illustrated by the Ec�iu� obtained by excitation of only the
M-shell of neutral Ar, also included in Fig. 2.

This power law decay suggests a transformation of the
frequency interval 0�u
� to some finite interval via a
power law transformation, as, for instance,

x =
1

1 + �u/s�
0 � x � 1, �33�

giving more weight to large u than an exponential transfor-
mation. The scale factor s is intrinsically related to the mini-
mum energy required for a virtual excitation, which is
roughly given by the eigenvalue difference �LUMO− ���
������ for a shell with average eigenvalue ���. The most
appropriate s can only be determined empirically. For all
atoms considered in detail the choice s=2����� seemed to
work reasonably well �see also below�. The result of the
transformation �Eq. �33�� is shown in Fig. 3 for He, Ar16+, as
well as the M-shell of neutral Ar.

One obtains a smooth function of x, with values remain-

FIG. 1. u4Ec�iu� vs u for He �maximum excitation energy ��
�4000 hartree�.

FIG. 2. �Color online� u2Ec�iu� and u3Ec�iu� vs u for moderately large u for
the case of He.

FIG. 3. �Color online� Integrand Ec�iu�du /dx of frequency integral after the
transformation �Eq. �33�� vs x for He, Ar16+, as well as the M-shell of neutral
Ar.
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ing on the same order of magnitude for all x. This ensures a
rapid convergence of the numerical integration over x with
the number of grid points.

However, the frequency integration in Eq. �5� suffers
from the fact that each shell in an atom �or molecule� intro-
duces a new energy scale for the virtual excitations. This is
most easily verified by plotting uEc�iu� on a double logarith-
mic scale, as done in Fig. 4 for He, Ne, and Ar.

Figure 4 demonstrates that there are two relevant scales
for Ne and three in the case of Ar. In fact, the plots confirm
that the behavior of Ec�iu� changes at roughly twice the av-
erage eigenvalues of the shells involved, with the position of
the highest energy transition point being somewhat less pro-
nounced ��K�Ne�=−30.8 and �L�Ne�=−1.1 and �K�Ar�
=−114.4, �L�Ar�=−9.4, and �M�Ar�=−0.7, which are all val-
ues in hartree�. It is therefore necessary to split the frequency
integration from 0 to � into intervals associated with these
individual energy scales. Let us call the boundaries of the
intervals bi,

0 = b0 
 b1 
 ¯ 
 bn = � , �34�

with n denoting the number of shells. The intervals are cho-
sen such that the characteristic energy scale sn of shell n is
bracketed,

bi−1 
 si 
 bi. �35�

In practice, si=2���i�� and bi=4���i�� seemed to provide a rea-
sonable partioning of the complete frequency range. Equa-
tion �5� may then be decomposed as

�
0

�

Ec�iu�du = �
i=1

n �
bi−1

bi

Ec�iu�du . �36�

In order to account for the piecewise decay of Ec�iu� the
transformation

xi =
�1 + si/�bi − bi−1��
�1 + �u − bi−1�/si�

u − bi−1

si
�37�

du

dxi
= si

�1 + si/�bi − bi−1��
�1 + si/�bi − bi−1� − xi�2 �38�

�i=1, . . . ,n� is most suitable. Equation �36� can then be writ-
ten as

�
0

�

Ec�iu�du = �
i=1

n �
−1

1

dxi
du

dxi
Ec�iu�xi�� . �39�

The success of this frequency partioning plus the power law
transformation scheme is demonstrated in Fig. 5, in which
the final integrands du /dxiEc�iu�xi�� are plotted for neutral
Ar.

In all three energy regimes a rather smooth integrand is
obtained, which allows the application of a Gauss-Legendre
quadrature to each interval. As a result, the error obtained for
a given total number of grid points Nu used for the Gauss-
Legendre quadrature is rather small already for very low Nu,
as illustrated in Fig. 6.

The most critical interval in Eq. �39� is the highest en-
ergy range, covering, in particular, excitations of the 1s-state.
For that reason the error is even lower if only excitations of
the valence shell are included �i.e., in the FC approximation�,
as is obvious from the error found for He or the M-shell of
neutral Ar.

IV. RESULTS

A. Sensitivity to form of KS orbitals

Standard KS-DFT calculations are based on the self-
consistent solution of the KS equations, which requires the

FIG. 4. �Color online� uEc�iu� vs u for He, Ne and Ar.
FIG. 5. �Color online� Integrand Ec�iu�x��du /dx of partioned frequency in-
tegral �Eq. �39�� resulting from the transformation �Eq. �37�� for neutral Ar.

FIG. 6. �Color online� Absolute error resulting from Eqs. �39� and �37� as a
function the total number of grid points Nu used for the Gauss-Legendre
quadrature �note that Nu is the sum of the number of grid points used in the
individual intervals�.
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evaluation of the XC potential vxc�r�=�Exc�n� /�n�r�. In the
case of LDA and GGA functionals the calculation of vxc�r� is
straightforward. On the other hand, a self-consistent imple-
mentation represents a much more serious problem for RPA-
type functionals. First of all, in the case of orbital-dependent
functionals vxc has to be determined via the OPM, i.e., by
solution of an integral equation.30 The solution of the OPM
integral equation is well-established for the exact exchange
and managable, though rather intricate, for the second order
correlation functional Ec

�2�.36–38,59 Its implementation for
RPA-type functionals, however, is much more challenging,
so that a full solution has only been reported very recently.43

On the other hand, a self-consistent implementation is only
then advantageous if the resulting correlation potential leads
to an improved total KS potential. It has been demonstrated
that this is not the case for some standard GGAs �Ref. 60�
and for Ec

�2�,38,39 which by far overestimates correlation ef-
fects. The situation is not yet completely clear in the case of
the RPA. The first RPA potentials available43 seem to im-
prove over vc

�2�=�Ec
�2� /�n�r� in the asymptotic regime, but

otherwise often follow vc
�2�.

Independently of this more fundamental aspect, one
might ask whether a self-consistent implementation is really
necessary to obtain accurate RPA correlation and thus ground
state energies. Clearly, a purely perturbative treatment of
RPA-type functionals on the basis of a self-consistent calcu-
lation with the exact exchange would allow their application
to much more complex systems, for which the solution of the
corresponding OPM integral equation is beyond current
computer resources. In fact, our experience with conven-
tional density functionals suggests that, at least for atomic
systems, the RPA correlation energy is not sensitive to the
detailed structure of vxc�r�.

In order to verify this expectation, the RPA ground state
energy �i.e., the sum of the KS kinetic energy, the Hartree
term, the exact exchange and Ec

RPA� has been calculated by
insertion of KS orbitals resulting from different XC function-
als: Orbitals obtained from self-consistent calculations with
only the exact exchange �EXX-only�, but neglecting vc com-
pletely, are compared with self-consistent LDA and GGA
orbitals. The results for a number of atoms are collected in
Table IV, which also includes recent self-consistent RPA
energies,43 whenever available. Table IV confirms the expec-
tation: Even though the KS potentials obtained by EXX-only
calculations differ substantially from their LDA and GGA
counterparts, the differences between the resulting RPA en-
ergies are quite small. The same is true for the deviations
between the perturbative RPA energies on EXX-only basis

and the self-consistent RPA results. This result is expected to
hold quite generally, as long as one does not examine a quan-
tity which is particularly sensitive to the correlation potential
�as, for instance, the quantum defect of high Rydberg
states61�. In fact, Table IV indicates that even a perturbative
treatment of both the exact exchange and the RPA may be
legitimate for very complex systems, in which even self-
consistent calculations with the exact exchange are too ex-
pensive. In the following sections, self-consistent EXX-only
orbitals are always used for the evaluation of the RPA corre-
lation energy.

B. RPA correlation energies of spherical atoms

In this work, we focus on atoms with closed or half-
filled shells, for which the ground state KS potentials for the
two spin-channels are both spherically symmetric. Table V
lists the correlation energies obtained from all four RPA-
based functionals for a series of atoms. To see trends more
clearly, the relative errors resulting from the various func-
tionals with respect to the exact correlation energies62 are
plotted in Fig. 7. Not surprisingly, the pure RPA always over-
estimates the true correlation energy. Adding the short-range
correction within the LDA �RPA+ � improves the results re-
markably, reducing the mean absolute error by more than an

TABLE IV. Absolute RPA total energies �in hartree� resulting from insertion
of different KS orbitals. The last row lists the self-consistent RPA total
energies given in Ref. 43.

KS orbitals He Be Ne Mg Ar N Na

LDA 2.945 14.751 129.140 200.293 527.905 54.735 162.475
BLYP 2.944 14.752 129.142 200.296 527.910 54.737 162.478
EXX-only 2.945 14.752 129.143 200.298 527.913 54.738 162.480
RPA 2.945 14.754 129.143 200.296 527.908 ¯ ¯

TABLE V. Absolute correlation energies �in hartree� of closed subshell at-
oms calculated from the RPA and RPA+ functionals by insertion of the
exact EXX-only KS orbitals in comparison with exact data Ref. �62�. The
last row provides the mean absolute error �MAE� with respect to the exact
energies.

Atom Exact RPA RPA+ RPA+SOX RPA+RSOX LYP

He 0.042 0.083 0.047 0.035 0.044 0.044
Li+ 0.043 0.087 0.048 0.039 0.045 0.048
Be2+ 0.044 0.088 0.048 0.041 0.045 0.049
Li 0.045 0.112 0.059 0.029 0.053 0.053
Be+ 0.047 0.122 0.066 0.031 0.056 0.061
B2+ 0.049 0.131 0.073 0.030 0.059 0.067
Be 0.094 0.179 0.108 0.058 0.097 0.095
B+ 0.111 0.205 0.131 0.066 0.110 0.107
C2+ 0.126 0.228 0.151 0.073 0.123 0.114
N 0.188 0.335 0.201 0.146 0.178 0.192
O+ 0.194 0.345 0.208 0.155 0.184 0.207
F2+ 0.199 0.355 0.215 0.162 0.189 0.218
Ne 0.390 0.597 0.400 0.340 0.367 0.384
Na+ 0.389 0.599 0.398 0.350 0.371 0.399
Mg2+ 0.390 0.601 0.398 0.358 0.375 0.411
Na 0.396 0.626 0.410 0.349 0.383 0.408
Mg+ 0.400 0.634 0.415 0.360 0.389 0.427
Al2+ 0.405 0.642 0.420 0.369 0.395 0.442
Mg 0.438 0.687 0.453 0.387 0.427 0.459
Al+ 0.452 0.706 0.468 0.402 0.440 0.481
Si2+ 0.463 0.722 0.481 0.414 0.451 0.497
P 0.540 0.850 0.554 0.482 0.523 0.566
S+ 0.556 0.873 0.573 0.499 0.538 0.588
Cl2+ 0.570 0.893 0.589 0.514 0.552 0.605
Ar 0.722 1.101 0.742 0.661 0.701 0.751
K+ 0.739 1.126 0.763 0.681 0.720 0.771
Ca2+ 0.754 1.150 0.783 0.702 0.737 0.788
MAE 0.196 0.015 0.039 0.011 0.018
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order of magnitude. As expected, the unscreened SOX con-
tribution by far overcorrects the error of the RPA. On the
other hand, the inclusion of EN-corrections into the SOX
term �RSOX� reduces this overcorrection significantly. In
general, both the RPA+ and the RPA+RSOX produce more
accurate correlation energies than the LYP-GGA, at least for
the set of atoms considered in this work. Moreover, for light
atoms one observes a tendency of the RPA+RSOX to be
superior to the RPA+.

C. Ionization potentials

Even more important than the accuracy of total �correla-
tion� energies is the accuracy of energy differences. In the
case of atoms the ionization potential �IP� serves as the pro-
totype energy difference for assessing the quality of any ap-
proximation. Much more than the total atomic Ec, the IP
probes the description of the correlation of the valence states.
We have therefore calculated the IPs resulting from the four
RPA-based correlation functionals for a number of atoms. In
order to avoid any uncertainty associated with spherical av-
eraging, the comparison is restricted to atoms for which both
the KS potential of the neutral ground state and that corre-
sponding to the ionic state are spherical. The results are col-
lected in Table VI. The most noteworthy features of these
data are as follows: �1� The pure RPA, though showing sig-
nificant improvement over the EXX-only approximation,

generally overestimates the true IPs; �2� correspondingly, the
RPA+SOX underestimates IPs �consistent with the un-
screened nature of the pure SOX term�; �3� both the RPA+
and the RPA+RSOX significantly improve over the pure
RPA results, and are even more accurate than BLYP, the
“most accurate” standard GGA.

V. SUMMARY AND CONCLUSIONS

In this work, we provide benchmark results for the RPA
and three simple extensions, allowing for an unambiguous
assessment of the functionals by comparison with exact data.
Our results confirm earlier observations of the limited appli-
cability of the pure RPA: The RPA substantially overesti-
mates correlation energies, which then results in an overes-
timation of energy differences such as ionization potentials.
On the other hand, our results also demonstrate that already
quite simple extensions of the RPA can be superior to stan-
dard GGAs: Adding either short-range corrections within the
LDA �RPA+ � or a suitably “screened” second order ex-
change contribution �RPA+RSOX� significantly improves
both absolute energies and energy differences. This success
is consistent with the expectation that the dominant source of
error in the RPA functional is the missing short-range SOX
contribution.

It seems worthwhile emphasizing that the first of these
extensions, the RPA+, essentially comes at no cost: Com-
pared to the computational demands of a RPA-calculation,
the cost of the LDA for the non-RPA correlation is irrelevant.
Moreover, a systematic improvement of the RPA+ by inclu-
sion of gradient corrections for the non-RPA correlation con-
tributions suggests itself. The RPA+RSOX involves an
evaluation of the orbital-dependent SOX term, which is com-
putationally almost as demanding as the calculation of the
RPA energy itself, but is still much less expensive than that
of the fully screened SOX term.

In this work also several technical aspects of RPA-
calculations have been studied systematically, of which two
should be relevant beyond the regime of atoms considered
here. The first of these aspects is the sensitivity of the RPA-
expression to the orbitals and eigenvalues used for its evalu-
ation. It turned out that the character of the KS spectrum
inserted into the RPA has little impact on the resulting en-
ergy. Even if KS states obtained by LDA calculations are

FIG. 7. �Color online� Relative errors resulting from different approximate
correlation energies, obtained from the data in Table V.

TABLE VI. First ionization potentials �in hartree� of spherical atoms calculated from total energy differences
�IP=Etot�N−1�−Etot�N��, using different XC functionals. The last row provides the mean absolute error �MAE�
with respect to the exact results �Ref. 62�. Self-consistent EXX-only KS orbitals are used as input orbitals.

Atom Exact EXX RPA RPA+ RPA+SOX RPA+RSOX BLYP

Li 0.198 0.195 0.220 0.205 0.185 0.203 0.201
Be+ 0.669 0.666 0.700 0.683 0.656 0.677 0.681
Be 0.343 0.295 0.352 0.338 0.323 0.336 0.329
B+ 0.924 0.861 0.935 0.919 0.897 0.912 0.904
Na 0.189 0.179 0.206 0.191 0.178 0.191 0.194
Mg+ 0.552 0.540 0.573 0.557 0.543 0.555 0.566
Mg 0.281 0.242 0.294 0.279 0.268 0.279 0.279
Al+ 0.691 0.643 0.706 0.691 0.677 0.688 0.691
MAE 0.028 0.017 0.005 0.015 0.005 0.009
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used the deviations from more accurate data remain small. In
order to cover systems with more than one occupied shell,
we have developed a partioning scheme for the frequency
integration inherent in all RPA-type functionals, which, to-
gether with a suitable transformation of the integration vari-
able, allows to perform the frequency integration with a
minimum number of mesh points. Both these numerical tech-
niques should be particularly helpful for applications to more
complex systems.
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