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order, the simplest first-principles correlation functional. The properties of this second-
order correlation functional are reviewed in detail. It is demonstrated that this
functional reproduces both the shell structure in the exact correlation potential and
dispersion effects. In response to the variational instability of the functional, observed
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1. Introduction

T he Kohn-Sham (KS) approach of density func-
tional theory (DFT) [1-5] is one of the most
widely used tools for electronic structure calcula-
tions in quantum chemistry and material science.
Present-day applications are usually based on the
generalized gradient approximation (GGA) [6-8]
for the exchange-correlation (xc) energy functional
E,.. Compared with the local density approxima-
tion (LDA), the GGA provides much-improved
ground-state energies and, at least in most situa-
tions, superior equilibrium geometries. However,
there are also a number of shortcomings of the LDA
that the GGA concept does not resolve; i.e., both
approximations (i) fail for the description of atomic
negative ions and Rydberg states [9, 10]; (ii) seri-
ously underestimate the bandgap of semiconduc-
tors [11]; (iii) often fail to predict the correct ground
state if there are several low-lying states that are
energetically close (see, e.g., Ref. [12]); (iv) do not
reproduce dispersion forces (and often have diffi-
culties with hydrogen bonds); and (v) yield quali-
tatively incorrect ground states for many strongly
correlated solids [13, 14].

To come up with a possible solution to these
problems, one has to identify their origin. Problems
(i) and (ii) are easily traced back to the incomplete
cancellation of self-interaction by LDA and GGA
exchange. The self-interaction correction (SIC) com-
ponent of the true exchange functional has to be as
long-ranged as the direct (Hartree) term. The LDA
and GGA energy densities and potentials, however,
depend on the density n(r) in a (semi-)local fashion,
i.e., are extremely short-ranged. As a consequence,
the LDA and GGA potentials for finite systems
asymptotically decay much faster than the exact
xc-potential, so that Rydberg states are not bound.
In the case of semiconductors, the incomplete SIC
leads to a destabilization of the more localized va-
lence band states relative to the conduction band
states, resulting in an underestimation of the
bandgap. Similarly, problem (iv) is obviously re-
lated to the short-range nature of the LDA and
GGA correlation functionals. While the role of in-
complete SIC and dispersion effects in problems
(iif) and (v) is not easily quantified, it is clear that
any improvement over the GGA concept has to deal
with these two issues.

Once the SIC has been identified as the most
important problem to address, it is a natural step to
consider use of the exact exchange E, of DFT [15,
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16]. This functional has the same form as the Har-
tree-Fock (HF) exchange, except that in the Fock (F)
term the HF orbitals are replaced by KS orbitals.
This idea relies on the fact that the KS orbitals (just
as the KS N-particle ground state) are unique func-
tionals of the density by virtue of the Hohenberg—
Kohn theorem applied to the noninteracting KS
system. The exact E, is thus an implicit density
functional, similar to the KS kinetic energy. Use of
the exact exchange immediately resolves all prob-
lems related to SIC, ensuring an asymptotically cor-
rect xc-potential.

However, for many energetic and structural
properties, KS calculations with only the exact ex-
change (in the following referred to as x-only cal-
culations), i.e., with complete neglect of correlation,
give results that are very close to the corresponding
HF data [17-22]. The combination of the exact ex-
change with a conventional density-based correla-
tion functional often leads to less accurate results
than pure GGA calculations [23, 24], the reason
being the lack of error cancellation between ex-
change and correlation, which is instrumental for
the success of the LDA, but also the GGA. Also,
semiempirical orbital-dependent correlation func-
tionals, i.e., the SIC-LDA [25] and the Colle-Salvetti
functional [26], have been tested with the exact E,,
but the results, although accurate for some quanti-
ties, are generally not satisfactory [27]. Even more
important, neither of these correlation functionals is
really nonlocal, so that dispersion effects are out of
reach anyway.

Fully nonlocal correlation functionals automati-
cally emerge from the application of standard
many-body theory, as soon as the KS single-particle
Hamiltonian is used as reference Hamiltonian [24,
28-32]. The simplest form of many-body theory is a
straightforward perturbation expansion of the xc-
energy in powers of the electron—electron coupling
constant ¢”. The first-order term of this expansion
leads to the exact exchange, while all higher-order
terms constitute the correlation energy E.. The low-
est-order correlation contribution is thus obtained
from second-order perturbation theory. The result-
ing functional represents the prototype implicit cor-
relation functional, as it is inevitably an important
ingredient of all more complete forms. In this con-
tribution, we review the derivation and the prop-
erties of this functional, emphasizing both its merits
and its limitations. In response to the latter, finally
a minimum partial resummation of the perturba-
tion series is put forward.
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The present work is organized as follows. Sec-
tion 2 outlines the general idea of orbital-dependent
xc-functionals, the procedure for the calculation of
the associated xc-potential, and a Green’s function
approach to the exact E_, which then serves as basis
for the derivation of the second-order expression
for E_. In Section 3, the latter functional is analyzed
in detail, addressing its accuracy for atoms and
molecules, its ability to reproduce dispersion forces
and its mathematical and variational properties. In
Section 4, the particularly simple partial resumma-
tion of the perturbation series is introduced and
applied to atoms. This study concludes with some
final remarks in Section 5. Atomic units are used
throughout.

2. Theory

2.1. CONCEPT OF ORBITAL-DEPENDENT
FUNCTIONALS

The KS formalism is based on the assumption
that for any (nondegenerate) interacting N-electron
system with ground-state density n(r), there exists a
(nondegenerate) noninteracting N-particle system
that has the same ground-state density,

V2
{ -5t vs(r)}¢k(r) = e dy(r) (1)

n(r) = 2 O/l (2)
k

where O, characterizes the occupation of the single-
particle state k,

1 ifg,=e¢
0, =0(gp—g) = {o othkerwiZe’ 3)

with e denoting the eigenvalue of the highest oc-
cupied molecular orbital (HOMO), identified for
simplicity with the Fermi energy. As the multipli-
cative potential vy of this so-called KS system is
uniquely determined by n(r) (by virtue of the Ho-
henberg—Kohn theorem [1] applied to the noninter-
acting KS system), all KS single-particle orbitals ¢
and eigenvalues g, are uniquely determined by the
interacting n(r) as well. In the standard KS ap-
proach, this fact is used to demonstrate that the KS
kinetic energy

VZ
T,=— E Oy J’ d37’¢1¢(l’) D) (1), (4)
k

is a density functional.

However, there is nothing to prevent us from
applying this concept as well to the xc-energy func-
tional. In fact, the representation of the xc-func-
tional in terms of ¢, and g, offers two advantages at
the same time. On the one hand, the set of ¢,
provides much more detailed information on the
electronic structure of the KS system than n. In
particular, the shell structure of quantum systems is
explicitly taken into account by use of the ¢, (which
is the reason for the dramatic improvement of the
KS scheme over purely density-dependent ap-
proaches of the Thomas—Fermi type; see, e.g., Ref.
[4]). On the other hand, once one allows a ¢, de-
pendence of E ., the derivation of xc-functionals
can directly rely on standard many-body methods,
which automatically leads to fully nonlocal func-
tionals (in the sense that the xc-energy density and
potential at point  do not just depend on ¢,(r) and
its first few derivatives, but rather on the form of
¢ (1) throughout all of space).

The best example for these statements and, at the
same time, the most important component of any
orbital-dependent E, , is the exact exchange of DFT,

1
E|[n] = =5 2 ©,0/Klk), (5)
kI

here expressed in terms of the KS-type Slater inte-
gral

GilkD) = J " f s BOHOG () ©

jr—7'|

In the case of E,, the explicit presence of individual
quantum states in the functional ensures the exact
cancellation of the self-interaction energy, which,
by definition, is included in the Hartree energy,

1
Enln] =5 2 ©,0/(kI[ki). (7)
kl

The exact treatment of the self-interaction energy
via (5) automatically resolves several shortcomings
of the conventional density functionals. Most nota-
bly, it ensures the stability of atomic negative ions
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[24, 33], due to the resulting asymptotic —1/r-po-
tential [34, 35], and widens the bandgap of semi-
conductors [36—42], as the attractive SIC affects the
valence band states more strongly than the conduc-
tion band states. Equation (5) has historically been
introduced as a definition [15, 16]. However, as will
be shown in Section 2.4, the exchange (5) also
emerges from straightforward perturbation theory.
Before discussing the derivation of E, and that of a
suitable counterpart for E_. any further, however,
the question for the corresponding xc-potential,

OE,c
vxc(r) = %/ (8)

has to be addressed.

2.2. OPTIMIZED POTENTIAL METHOD

Let us assume that we have some (yet to be
specified) expression for the xc-functional, whose
basic ingredients are the KS orbitals and eigenval-
ues (the derivation and explicit form of such func-
tionals will be discussed in Section 2.3). Of course,
such expressions do not allow a direct analytical
functional differentiation with respect to n(r), as
LDA or GGA functionals. Rather, the xc-potential
has to be calculated indirectly via solution of an
integral equation (or procedures equivalent to that).
This optimized potential method (OPM) or opti-
mized effective potential (OEP) can be derived ei-
ther by minimization of the total DFT energy under
the constraint that v, is a multiplicative potential
[34, 43], by the identification of the exact with the
KS density [44, 45], or by direct functional differen-
tiation, relying on the chain rule [30] (cf. Ref. [46]).
For a general xc-functional of the type E,[¢y, &,
one obtains [31]

f @1’ xo(x, 1)0,(r") = Q.(¥). 9)

The kernel of this integral equation is given by the
static response function of the KS system,

Xi(r, 1) = =2 O BNG(r, ) i) + c.c., (10)
k

with the Green’s function G(r, t’) defined as
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Cir vy 5 HOBE). o

e 81T Bk
The inhomogeneity of Eq. (9) reads

8E,
Qu®) =—> J d37"[¢£(1’)Gk(1’, r') 361 + c.c.

dE,. 12
)

+ Slor
k

Integration over (9) allows to establish an important
sum rule, any E, . has to satisfy (in the case of a
completely discrete spectrum),

f & f Pr it 1) () = 0 = f FrQ. (1. (13)

Evaluation of the right-hand side of (13) with (12)
then leads to [31]:

> 0 _ 0. (14)

de
. &

2.3. EXACT XC-FUNCTIONAL FROM KOHN-
SHAM MANY-BODY THEORY

Let us now come to actual expressions for E, [,
€] In the first step, an exact relation for E, . will be
established, which will subsequently serve as basis
for the derivation of approximations. The starting
point for the discussion is the noninteracting N-
particle KS Hamiltonian:

A =T+ jdsrﬁ(r)vs(r), (15)

defined by the exact v,, which is assumed to be
known for the moment. The Hamiltonian [ of the
actual interacting system can then be decomposed
into H, and a correction H;,

H=W- f Eriv(n[on(®) + v (0], (16)

where W denotes the electron—electron interaction
operator, and vy represents the Hartree potential:
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vy(r) =fd3r’ nir) . (17)

jr—7'|

Applying standard techniques of many-body the-
ory, one can then derive the following exact expres-
sion for E, . [31, 46]:

S0 [ ’
EXCZEX‘FEMJ di’l"'J dt,,

n=1

X ADg|THy (0)Hy (1) - -Hy (1) | Do)y, (18)

where E, is the exchange functional (5), |®,) is the
ground state of the KS system,

Hs‘¢)0> = E ®k8k’q)0>/ (19)
k

Hu(t) represents H; in the interaction picture with
respect to H,,

() = e Hie ™, (20)

and T denotes time-ordering [47]. Equation (18)
is understood to be evaluated by application of
Wick’s theorem and the Feynman diagram tech-
nique. The index 1 indicates that in this evaluation
only diagrams linked to the “external” vertex
HLI(O) have to be included. As indicated earlier, the
exchange functional (5) emerges automatically
from the first-order contribution in H, (which in-
cludes additional terms required to end up with the
correct DFT total energy). The second term on the
right-hand side of Eq. (18) is thus an expression for
the exact E..

Equation (18) represents an exact relation be-
tween E,. and the elements of the series of Feyn-
man diagrams on the right-hand side. These ele-
ments are the single-particle Green’s function of the
KS system:

+ @W}, @1
w— & — l'T]

and the components of the perturbation I:Il, i.e., the
Coulomb interaction, vy and v,.. The contributions
arising from vy exactly cancel with the so-called

tadpole diagrams generated from the Coulomb in-
teraction [31]. One thus ends up with a relation
linking E, . with G, and v, .. While the occurrence of
G, induces to the desired representation of E . in
terms of ¢, and g, the occurrence of v, = 8E,./én
on the right-hand side of Eq. (18) completely
changes the character of this relation: Rather than
being an assignment statement, Eq. (18) is a highly
nonlinear relation for E, . Although one can rigor-
ously deal with this nonlinearity in the OPM pro-
cedure [31], this feature clearly complicates actual
applications. For that reason, in the following, Eq.
(18) will only be used for the derivation of approx-
imations that are free of this nonlinearity.

2.4. PERTURBATION EXPANSION: SECOND-
ORDER CORRELATION ENERGY

The natural first step of any evaluation of Eq. (18)
is a straightforward perturbation expansion in
powers of e* (KSPT). The formalism then becomes
quite similar to the many-body perturbation expan-
sion based on the HF Hamiltonian, usually known
as Moller-Plesset (MP) expansion. Nevertheless
there are fundamental differences between the MP
and KS perturbation expansions. In the MP expan-
sion, due to Brillouin’s theorem, the contributions
of the single-particle ingredient of H, are exactly
cancelled by simple contractions of the two-particle
operator in H,, which is no longer true in KSPT. As
a consequence, KSPT involves additional diagram-
matic contributions, absent from the MP expansion.
In addition, the spectrum of the KS Hamiltonian is
quite different from that of the HF Hamiltonian for
the same physical system (due to the asymptotic
—1/r-decay of the exact DFT exchange potential).

With that in mind let us expand (18) to second
order in the coupling constant ¢,

Eo=SPENm=E+EX+---  (22)
=1
b= S ] = o 40P+ (23)

I=1

(any A, introduces at least one factor of ¢?). Inser-
tion of these expansions into the left- and right-
hand side of Eq. (18) yields a well-defined power
series in ¢ The second-order term provides the
lowest-order correlation contribution. It can be
written as the sum of two terms
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Correlation energies (—E_, in mHartree) of closed-subshell atoms obtained by insertion of x-only KS orbitals

and densities.*

Atom Exact VWN LYP PBE EMP2 EAHF HHEN
He 42 113 44 42 48 0 40
Li 45 152 53 51 49 44
Be 94 225 95 86 124 1 86
N 188 429 192 180 216 186
Ne 391 746 384 351 471 2 420
Na 396 805 408 372 458 419
Mg 438 892 459 411 513 3 457
P 540 1118 566 526 621 560
Ar 722 1431 751 707 846 7 764
MAPE(%) 130 5 6 17 5

* Various correlation functionals in comparison with exact data (taken from Ref. [49]). The HHEN functional is defined by Eq. (58) and
discussed in Section 4. The last row provides the mean absolute percentage errors (MAPE) with respect to the exact energies.

E(Z) EMPZ + EAHF (24)

EMP? has the same form as the standard MP2 ex-
pression [48]:

abl|i ab||ji)
Eg/ﬂ’z E®®®®bM, (25)
l]ab 8,‘ Sj — & T &

where ©®, = 1 — 0,. The second term accounts for
the fact that the present perturbation expansion is
not based on the HF Hamiltonian, but rather on the
KS Hamiltonian,

iloTF — v |a)P
EAHF E@@ %, (26)

where

({0 ay =

=2 0(ijl|ja). (27)
j

The result (24) agrees with that obtained by an
equivalent second-order expansion of the adiabatic
connection formula for E_ [30].

E2HMF is well defined as soon as v, has been
determined by solution of the OPM equation (9) for
E, (see Refs. [24, 31]). However, E2"F is quantita-
tively much smaller than EM"™ and even vanishes
for spin-saturated two-electron systems [46] (see
also below).

In contrast to the exact E,, EM"? depends on both
the occupied and the unoccupied KS orbitals and
eigenenergies, which is a common feature of all
orbital-dependent correlation functionals obtained
from many-body theory on the basis of the KS
Hamiltonian. As a result, actual applications are
much more demanding than conventional DFT cal-
culations.

3. Analysis of Second-Order
Correlation Functional

3.1. ATOMIC CORRELATION ENERGIES

The first step of the analysis of any approximate
functional is the perturbative evaluation of the as-
sociated energy for some reference systems. The
correlation energy is known very accurately for a
number of light atoms and some simple diatomic
molecules. A comparison of atomic correlation en-
ergies is given in Table I, focusing on atoms with
spherical spin densities. The latter restriction has
the advantage that all quantities required (KS orbit-
als, densities, gradients, correlation energies) can be
calculated on a radial mesh to any desired accuracy,
using finite difference techniques. The correspond-
ing results are thus free of any basis set limitations.
Table I first of all reflects the fact that atomic E_ are
drastically overestimated by the LDA (the VWN
form [50] has been applied), while GGAs come
rather close to the exact values. This is demon-
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TABLE Il

Correlation energies (—E_, in mHartree) of closed-
subshell atoms.*

TABLE 1l

Energy surface of N, at an interatomic separation of
2.07509 Bohr.*

PBE EMP2
Atom x-only Exact x-only Exact
He 42 42 48 48
Be 86 86 124 128
Ne 351 350 471 478

* Values obtained by insertion of x-only KS orbitals and den-
sities versus data resulting from exact KS solutions [51].

strated for the two most widely used forms, the
semi-empirical Lee-Yang-Parr (LYP) GGA [7] and
the first-principles Perdew—Burke-Ernzerhof (PBE)
GGA [8]. Compared with the GGAs, the average
deviation of the second order functional (24) is
rather high, independent of whether E2M'F is in-
cluded. (Table I explicitly demonstrates the negli-
gible magnitude of E-''F.) Nevertheless, the im-
provement over the LDA is quite obvious.

The comparison of Table I is based on densities,
orbitals, and eigenvalues obtained from self-consis-
tent calculations with the exact exchange, but with-
out any correlation (x-only calculations). This en-
sures that in the comparison the corresponding
correlation potentials do not play any role, thus
focusing completely on the properties of the energy
expression (self-consistent results are discussed be-
low). Ideally, this comparison was based on the
exact KS orbitals and densities, which are not avail-
able, however, for most of the atoms. It is thus
worthwhile to remark that the use of the x-only
solutions is not completely misleading, as even in
the case of orbital-dependent functionals the result-
ing energies are rather insensitive to the orbitals/
densities inserted. This is demonstrated in Table II
for a few atoms for which the exact KS solutions are
known. Quite generally, both the xc-energies and
the xc-potentials of atoms are insensitive to the KS
solutions inserted, as long as no self-consistent it-
eration is involved (compare the result for v, in Ref.
[46]).

In the case of molecules, dissociation energies are
generally used for such comparisons, rather than
molecular E_. Table III provides such a comparison
for the nitrogen dimer at a bond length of 2.07509
Bohr, with the DFT data based on a self-consistent
x-only calculation. Obviously, the overestimation of
molecular correlation energies by E® is even more
severe as the deviations observed for atoms.

Method E,
Expt. 9.91
CCSDTQ 9.905
E, + E® 14.36

* Exact exchange plus second-order correlation (added per-
turbatively on basis of x-only calculation) versus CCSDTQ
data [52]. Also given is the experimental bond energy [53].

Unfortunately, Table III does not yet provide the
complete picture. If one considers the complete en-
ergy surface (E,) one finds that this functional does
not even generate some minimum at all, as shown
in Figure 1. With increasing separation of the two
atoms E? becomes increasingly negative, as a re-
sult of the shrinking energetic gap between the
highest occupied molecular orbital (HOMO) and
lowest occupied molecular orbital (LUMO) states
(which have Rydberg character in the case of the
x-only spectrum). Consequently, the pure second-
order KS perturbation expansion can even lead to
qualitatively worse results than the LDA or GGA.

3.2. DESCRIPTION OF DISPERSION FORCES

One of the motivations for considering orbital-
dependent xc-functionals is the complete failure of
the LDA and GGA concepts for the description of
dispersion forces. From the functional form of E®

— E+E?
X [~

~ -
T —

Eb [Hartree]

M L 1 " "
1.8 2 2.2 2.4 2.6
R [Bohr]
FIGURE 1. Energy surface (E,) of N,. Exact exchange

plus second-order correlation (added perturbatively on
basis of x-only calculations) result versus x-only data.
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TABLE IV

van der Waals coefficients C4 (in atomic units)
obtained from Eq. (29) on basis of x-only orbitals
and eigenvalues [54].*

Atoms E@ Empirical
He—He 1.66 1.46
He—Ne 3.49 3.03
Ne—Ne 7.45 6.38
Xe—Xe 730.7 285.9

H—He 3.02 2.82 £ 0.02
H—Na 81.14 71.8 = 0.3

* Empirical results are taken from Refs. [55, 56].

and its relation to the MP expansion, one would
expect this functional to reproduce dispersion
forces. A detailed analysis [24, 31] in fact shows that
the correlation contribution to the interaction (en-
ergy surface) of two well-separated systems A and
B resulting from E® is given by

C
E2. =~ gt (28)

% du 3 RzR/ RkRZ
C6: EZ 811_3? 8k1_3?
0 ijkl=1

XaA,ik(iu)aB,jl(iu)/ (29)

where R is the Cartesian vector connecting A with
B and a,(iu) denotes the atomic or molecular po-
larizability tensor (evaluated at imaginary fre-

quency),
ai(w) =fd3rfd3r’riri>(§(r, ', w),  (30)

whose basic ingredient is the frequency-dependent,
retarded KS response function,

& (1)) (1) bi(r")

w—g +¢g+in

XS, 7', @) = 2 [0, — 0]

ik

(31)

Equation (28) has the standard form of the disper-
sion force. Obviously, E® is able to reproduce the
correct long-range interaction proportional to 1/R°.
However, the exact result for the coefficient Cg4 in-

ORBITAL-DEPENDENT CORRELATION

volves the full atomic polarizabilities, while the
present DFT variant of Cg4 is determined by the KS
polarizabilities (as a consequence of the second-
order expansion). A comparison with very accurate
Ce [54] shows that for light atoms Eq. (29) yields
reasonably accurate coefficients: Eq. (29) overesti-
mates the full C4 by 10-20% (see Table IV). In
contrast, for heavier atoms higher-order corrections
become important, so that Eq. (29) is no longer close
to the true result.

It remains to be examined how accurately the
second-order functional reproduces the dispersion
force if the two systems are less well separated, i.e.,
for realistic interatomic separations; to predict the
equilibrium geometry of a van der Waals bond
molecule, it is not just sufficient to have the correct
asymptotic 1/ R®-attraction, but rather the complete
energy surface must be accurate. This point is in-
vestigated in Figure 2, which shows the energy
surface of the He dimer [21]. He, is a particularly
critical system, as the He, bond is extremely weak,
leading to a very delocalized ground-state wave
function of the nuclei [59]. It thus provides an ideal
testing ground for approximate correlation func-
tionals. Figure 2 compares the results from three
DFT calculations with HF data [57] and the exact
E,, obtained by variational calculations with corre-
lated wave functions [58] (all E,, are strictly nonrela-
tivistic). Compared with the complete failure of the
LDA (the LDA requires the densities of the two
atoms to overlap, to produce binding), the second-
order functional yields a fairly realistic result. As
for atomic E_ and C,, the agreement with reference
results becomes worse with increasing atomic size
[21].

[ exact T
: ===+ x-only OPM

E g R L X B 1L

g ; ==+ LDA a
: 3 ¢ HF

40 =1 1 1 1 |
4 5 6 7 B ] 10

f#  [Bohr]

FIGURE 2. Energy surface E, of He,. E2 in combina-
tion with exact E, (FC2-OPM) versus LDA, x-only OPM,
and HF [57] data, as well as an exact result [58].

VOL. 106, NO. 15  DOI 10.1002/qua

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 3249



ENGEL AND JIANG

3.3. SOLUBILITY OF THE OPM EQUATION

So far, all results discussed were based on a
perturbative evaluation of E. Now the question of
the corresponding correlation potential has to be
addressed. As discussed in Section 2, its calculation
requires the solution of Eq. (9), which is straight-
forward, although computationally demanding, in
the case of the exact E,. It becomes even more
demanding as soon as the complete KS spectrum
enters is present in E . and, in particular, if the
inhomogeneity depends on v, via (26). While the
functional derivatives of v, with respect to the ¢
and g, can be handled rigorously [31], the resulting
computational cost is excessive. Given the negligi-
ble magnitude of E2''F, this part of E® is therefore
dropped in the following. Note that all results are
nevertheless exact for spin-saturated two-electron
systems, as E2"'F vanishes identically for these sys-
tems.

As they stand, Egs. (9)-(12) apply to systems
with a completely discrete spectrum. For atoms and
molecules, such a spectrum is obtained as soon as a
basis set is used for the representation of the KS
states or suitable boundary conditions are applied
(e.g., enclosing the system in a box and requiring
hard-wall boundary conditions). In reality, how-
ever, free atoms and molecules have a continuous
energy spectrum of positive energies, in addition to
the occupied levels and the Rydberg-type unoccu-
pied states. Both the orbital-dependent xc-func-
tional itself and the OPM equations have to account
for the continuous contribution. Restricting the dis-
cussion to closed-subshell atoms, one finds for EX'"2
[60, 61]:

EMP? = EPP 4 2FPC 4 ECC (32)

N(n4ly, nzlz|n3l3/ 14ly)

EXP = (33)
N1n2n3i4 871111 + 871212 - 871313 - 871414
hialsly
DC - N(ml, naly|nsls, kI)
EPC= > | dk (34)
+ €, — Epy — €
ningn3 8;1111 12l nsl3
hiblsl Y0

= 7 N(mly, nblkl, k'T
E§C=EJ dkj g N0t = ) (35)
0 0

’
nin En + Epmly — €T E
LIl

In Egs. (33)-(35), N abbreviates the appropriate
product of occupation factors, angular momentum
coupling coefficients, and radial Slater integrals:

N(12[34) = 0,0,0,0, x [D(12]34) — X(12/34)]
(36)

D(12|34) =2 >, (12|34)3(1,01,0|L0)*(1,01,0|L0)>
L=0
L+1D)2L+1)2L,+1)(21,+1)
% QL +1)°

(37)

X(12|34) = E (—1)11+12+13+Z4+L+L'

L,L'=0
X (12[34),(12/43), W(L,Isl,l5; LL") X (1,01,0|L0)
X (1,01,0|L0) X (1,01,0|L’0)(1,01,0|L'0)

@l + 1)L + 1)l + 1)L, + 1)
QL+ 1)L + 1) ’

(38)

where (I,1m,l,m,|LM) denotes a Clebsch-Gordan co-
efficient, W(l,151,1,; LL") a Racah coefficient (both in
the definition of Rose [62]) and the radial Slater
integral is given by

(12(34),

=derfwdr’ %Pl(r)P3(r)P2(r’)P4(r’). (39)

>

Here P denotes a solution of the radial KS equation
for either a discrete (g,;) or a continuous energy
e =k/2,

—-17¢ 11+1)
(2 e o0 - adrain =0 o)

178 10+1) Rl
2 R RETCR ORI

with the normalization of P, chosen in the standard
fashion (cf. Ref. [63]):

- 2 Zm ™
Py(r — o) ~ —sin kr + Tln(Zkr) — El — Ny |-
(42)

In the case of the radial OPM equation,
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f dr'K(r, r")oy(r') = Qx(r), (43)
0

the continuous spectrum shows up in the radial
response function

K(T’, 7’/) =-4 E ®nl(21 + 1)Pn1(r)Gnl(r/ r/)PnI(r,)/

nl

(44)
via the radial Green’s function,
P,(r)P,. (1
Gulr, 1) = 3 M
, n'l Enl
n'#n
= Py(r)Py(r’
+J dk k(1) Pra( ), (45)
& 7 &y
0

and in the inhomogeneity,

Quelr) = Qe -(N + Qi+ () + QUr)  (46)

” 8EXC
:C,*(r) = _EJ‘ dr’Pnl(r)Gnl(r/ 7”) W (47)

nl Jg

== | k| arxE ) Db
Qxc,+(r)——l O O r Xsz(r)le(r,r)W
(48)

OE,.
(49)

QE(T’) = E Pnl(r)2
nl

88,,[

Pn’l(r) Pn’l(r’)

Eyp — €

Gu(r, r') = E

n'

o I_), I_), ’
L P J g Do OP) o)
E —€&
0

By careful analysis of Egs. (43)—(45), one can show
for both a completely discrete system and the actual
spectrum of free atoms [61, 64] that

Jo dr'K(r, r")or) "=~
Jodr'K(r, r")o,(r')

const, (51)

ORBITAL-DEPENDENT CORRELATION

as long as

lim v(r) = 0. (52)

r—%

However, in view of (43), Eq. (51) implies

SCZ; : const. (53)

Unexpectedly, it turns out that the ratio Q./Q, does
not approach a constant in the case of the MP2
energy expression [61, 64, 65]. One concludes that
the radial OPM equation (43) for EX"* does not
have a solution with the standard boundary condi-
tion (52).

One can also arrive at this surprising result from
a somewhat different perspective. As long as (43) is
valid, i.e., as long as the radial OPM equation has a
solution, the sum rules (13) and (14) remain valid
for spherically symmetric systems:

f“ drQ.(r)=0 (54)
dE,
> 35, = 0, (55)

k

where the compliance of the exact E, with (13) and
(14) has been used. Note that the sum in (55) only
comprises the discrete states, just as in (49). This is
a consequence of the fact that one finds a solution of
the KS equation for arbitrary positive energy e,
irrespective of the form of v,, as long as (52) is
satisfied. However, insertion of Egs. (32)—(35) into
(55) immediately shows that (55) is violated in the
case of the MP2 functional [61, 65]. Thus, one ends
up with the conclusion that the OPM equation for
EY"? cannot be solved as soon as positive energy
continuum states are present.

As already indicated, a completely discrete spec-
trum can be ensured by hard-wall boundary con-
ditions, which in the case of spherical atoms are
imposed by requiring P, (r = R;) = 0 for some
(large) radius R,,. This technique can serve both as a
mathematical tool for the analysis of the OPM pro-
cedure and as a practical technique for performing
self-consistent calculations. In the former case, R,
can be taken arbitrarily large, allowing study of the
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transition from a discrete to a continuous spectrum.
In this way, one finds [61]

Rp— Ro—»

JW dr lim Q°(r) # lim J OerE(r) =0, (56)

which identifies the violation of the sum rule as an
order of limits ambiguity. Equation (56) implies
that the OPM equation cannot be solved after the
continuum limit has been taken for its ingredients.

In contrast, if one keeps R just large enough that
the chemical properties of the atom (i.e., the highest
occupied and lowest unoccupied states) remain un-
affected, one ends up with a practical scheme for
application of EM"? [66]. In this scheme, each cycle
of a self-consistent calculation for a free atom con-
sists of the following steps:

1. For given total potential v,, solve the radial KS
equations for 0 = r < % and construct a new
Hartree and exchange potential from the so-
lutions. In practice, this amounts to solving
the radial equations on a grid that extends
sufficiently far out that all occupied orbitals
have vanished. For the large values of R, cho-
sen, this is the case before R, is reached, so
that the solution inside the spherical cavity
coincides with the standard procedure for free
atoms.

2. For the same total potential v,, solve the radial
KS equations for 0 = r = R, with boundary
condition P, (r = Ry) = 0 for the complete
spectrum (i.e., for as many positive energy
states as one can afford).

3. Construct the Green’s function (11), kernel
(10), and inhomogeneity (12) for EX'" from
the solutions and solve (43) in discretized
form on the radial mesh (for 0 = r = R,).

4. Extend the resulting v}'" into the region r >
R, by adjusting the parameters of the exact
asymptotic form of v, to the numerical data
for v2"** in the semi-asymptotic region 4 Bohr
< r << R, in which the potential of the atom
in the cavity is neither affected by a nonvan-
ishing electron density nor by the hard-wall
boundary condition at R,,.

5. Add the resulting v} for the complete space
to vy and v, to form a new total v,.

The details of this procedure and a critical assess-
ment of its accuracy can be found in Ref. [66]. All

subsequent numerical results for vY'" have been
obtained with the same technique and parameters
as used in Ref. [66]. In particular, a cavity radius of
Ry = 20 Bohr has been used, and states up to an
energy of g, ~ 1100 Hartree and an angular
momentum of /., = 6 have been included in all
sums over positive energy states.

As a final remark on the solubility of the OPM
equation for EM"?, it should be emphasized once
more that the use of basis set expansions for both
the KS states and the xc-potential also resolves the
ambiguity originating from the positive energy
continuum [67-69]. However, due to the very dif-
ferent spatial form of orbitals and xc-potentials, this
approach requires a very careful treatment of the
basis set representation of v,., in particular in the
asymptotic regime. To provide reference results a
fully numerical scheme relying on finite differences
methods (as the one described above) is clearly
advantageous.

3.4. CORRELATION POTENTIAL

3.4.1. Comparison With Reference Dala

As the only component of the total KS potential
that has to be approximated, the xc-potential is the
most critical ingredient of any self-consistent KS
calculation. The accuracy of v,., especially its be-
havior in the asymptotic region, is particularly im-
portant for the quality of the eigenenergies and
orbitals. These latter quantities not only are rele-
vant for ground-state properties, but also serve as
input to time-dependent DFT (TDDFT) calculations
within the linear-response regime.

The asymptotic behavior of the exact v, is dom-
inated by the exchange potential with its —1/r—
decay. Using the exact exchange, one can thus ob-
tain KS spectra that are much more accurate than
their LDA/GGA counterparts. However, it is well
known that the variation of atomic ionization po-
tentials and, in particular, electron affinities over
the Periodic Table can only be reproduced by in-
clusion of an accurate correlation potential [70].
Moreover, as a microscopic local quantity, the cor-
relation potential is much more characteristic of the
performance of an approximate correlation func-
tional than the corresponding energy, similar to the
situation for E, [71].

As the first step of the analysis of the correlation
potential corresponding to EM"2, a comparison with
exact reference data seems most appropriate. Fig-
ure 3 compares v} with the exact v of Be and Ne
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FIGURE 3. Correlation potentials corresponding to
the exact ground-state densities of Be and Ne: MP2
(long dash), HHEN (dash-dot), VWN-LDA (dot), and
LYP-GGA (dot-dot-dash) versus exact correlation po-
tential (solid) [51]. [Color figure can be viewed in the
online issue, which is available at www.interscience.
wiley.com.]

[66]. The latter potentials have been obtained by
inversion of the radial KS equation for given, highly
accurate Monte Carlo densities [51]. Accordingly,
vMP2 is constructed from the orbitals and eigenen-
ergies resulting from the exact KS potentials for
these systems. Figure 3 clearly shows that o)"?
reproduces the shell structure of the exact v, in-
cluding the fact that the correct v, has to be asymp-
totically attractive on the left-hand side of the Peri-
odic Table (Be), but repulsive on the right-hand side
(Ne). Although the amplitudes of all shell features
are by far overestimated by v}'"?, the improvement
over the LDA [50] and the GGA [7] is dramatic.
Figure 4 shows v} for Li and N. As no exact KS
potentials for these spin-polarized atoms are avail-
able, the results displayed in Figure 4 are based on
the solutions of self-consistent x-only calculations
with the exact exchange. Besides the structures al-
ready observed for unpolarized atoms, two new

ORBITAL-DEPENDENT CORRELATION

features are remarkable when comparing LDA/
GGA and MP2 potentials. First, in the core region,
in which the electron densities of the two spin
channels are essentially identical, v., and v, are
very close in the case of the LDA and GGA. In
contrast, v., and v differ by an almost constant
shift in the case of EX'"?, which is reminiscent of the
derivative discontinuity of the exact E.. Second, for
Li, the MP2 correlation potential of the majority-
spin channel, v.,, is mainly attractive, while the
minority-spin potential, v, is repulsive. In the
case of N, the sign of the majority-spin channel is
repulsive, while the minority-spin potential re-
mains close to zero in the valence regime and be-
comes attractive in the core region. This reflects the
fact that for Li the majority-spin channel is domi-
nated by the valence 2s orbital associated with the
left-hand side of the Periodic Table, while the mi-
nority-spin channel is determined by the 1s state
corresponding to the closed-shell He configuration,

o

v_(r) [Hartree]

4]

v_(r) [Hartree]

o

Ié3
r [Bohr]

FIGURE 4. Spin-up (thick lines) and spin-down (thin
lines) correlation potentials of Li (top) and N (bottom)
based on self-consistent x-only densities: MP2 (solid)
versus VWN-LDA (dash) and LYP-GGA (dash-dot).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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and thus the right-hand side of the Periodic Table.
For N with its filled majority-spin 2p orbital and its
completely unoccupied minority-spin 2p orbital,
the situation is essentially reversed. This feature,
which was also observed for the correlation poten-
tials obtained by inversion of CI spin-densities [72],
is completely absent in the case of LDA and GGA
potentials.

Taking Figures 3 and 4 together, the first-princi-
ples nature of EX'" is quite obvious. In contrast, the
overestimation of the various structures in the exact
v, is substantial. In fact, the differences between
oM and the exact v, are larger than those between
the latter potentials and v, = 0, reflecting the per-
turbative nature of EM™,

3.4.2. Variational Instability

The next step of the analysis of EY'"? is its self-
consistent application. Self-consistent calculations,
however, are intrinsically linked to the variational
stability of a functional. As an inspection of (25)
immediately shows, EM"? is unbounded from be-
low; ie., it approaches —o if the energetic gap
between HOMO and LUMO states shrinks to zero.
Thus, systems for which HOMO and LUMO states
are degenerate, like metals, are clearly beyond the
regime of applicability. However, the question is
whether EM"™ is variationally stable for systems
that, in principle, should have a finite gap. Naively,
one expects an unconstrained variational minimi-
zation of a total energy functional including EX'" to
fail due to the unboundedness of EE/[PZ. However,
EM"? is only a minor component of the total energy
and v} is usually small compared with v, vy
and v,. It is thus not clear a priori whether v} can
induce a breakdown of the HOMO-LUMO gap. For
instance, in the case of the noble gas elements the
energetic separation and the associated spatial sep-
aration of HOMO and LUMO states are so substan-
tial that a non-Coulombic potential as v}'"* should
not alter the situation. In contrast, for the alkaline
earth elements the HOMO and LUMO states are
energetically and spatially close together, so that a
minor modification of vy may lead to degeneracy.
Under these circumstances, only actual calculations
can clarify the situation.

Self-consistent calculations with the combination
of the exact E, and EM™ (denoted by FMP2 in the
following) for all closed-(spin-)subshell atoms up to
Argon turned out to be convergent, with the only
exception of Be [66]. The variational instability ob-
served for the Be atom is easily traced to the closing
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FIGURE 5. Evolution of the HOMO-LUMO gap during
self-consistent FMP2-OPM iteration for Be. [Color fig-
ure can be viewed in the online issue, which is avail-
able at www.interscience.wiley.com.]

of the HOMO-LUMO. This is illustrated in Figure
5, which shows the gap during the course of the
self-consistent iteration. The instability shows up
no matter which initial guess is used for the self-
consistent iteration, indicating that it is an intrinsic
property of EY"2. Although the instability was not
observed for Mg, it is to be expected that many
similar cases exist.

As a final remark on v we note that for all
atoms for which the FMP?2 iteration is stable the
self-consistent v} shows more pronounced shell
oscillations than those calculated perturbatively
from either x-only or exact densities.

3.4.3. Self-Consistent Total Energies and
Tonization Potentials

The total ground-state energies and HOMO eig-
envalues resulting from these self-consistent calcu-
lations are listed in Tables V and VI, together with
the corresponding LDA and GGA data.

The results obtained with the xc-functionals are
compared with the exact values obtained from the
combination of experimental ionization energies
with highly accurate variational calculations for
two- and three-electron systems, corrected for rela-
tivistic and recoil effects [49]. Table V demonstrates
that the exact exchange plus MP2 correlation gives
ground-state energies that are somewhat more ac-
curate than the first-principles PBE-GGA, but some-
what less accurate than the semi-empirical BLYP-
functional, in spite of the obvious improvement of ..

The latter property becomes more important
for the ionization potential (IP), which, on the
exact level, is identical with the eigenvalue of the
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TABLE V

Absolute total ground-state energies (in Hartree) of spherical atoms obtained by self-consistent calculations:
E, + EMP2 (FMP2) versus LDA [50], BLYP-GGA [6, 7], PBE-GGA [8], and exact data [49].*

Atom Exact LDA BLYP PBE FMP2 FHHEN
He 2.904 2.835 2.907 2.893 2.910 2.901
Li 7.478 7.344 7.483 7.462 7.482 7.476
Be 14.667 14.447 14.662 14.630 14.696° 14.659
N 54.589 54.137 54.593 54.536 54.622 54.590
Ne 128.938 128.233 128.973 128.866 129.026 128.969
Na 162.257 161.448 162.293 162.173 162.319 162.278
Mg 200.053 199.139 200.093 199.955 200.129 200.071
P 341.259 340.006 341.278 341.116 341.338 341.276
Ar 527.540 525.946 527.551 527.346 527.661 527.578
1A] 0.683 0.018 0.079 0.055 0.015
|Almax 1.594 0.040 0.194 0.121 0.038

* The energies resulting from the combination of the exact E, with the partially resummed functional (58) (FHHEN) are also listed. The
last two rows show the mean and maximum absolute errors, respectively, with respect to the exact energies [49].
2 From perturbative calculation based on the x-only density.

HOMO KS state [73]. The difference between the
exact IP and the HOMO eigenenergy therefore
provides a simple quantitative measure of the
accuracy of the xc-potential. Table VI illustrates
the well-known fact that LDA and GGA yield
poor results, with the GGA not improving over
the LDA. The combination of the exact exchange
with the LYP-GGA (FLYP), though much more
accurate than pure LDA or GGA data, gives less

accurate results than x-only calculations. This
again demonstrates the complete failure of GGAs
to reproduce atomic v.. The FMP2-functional also
does not improve over the x-only results. This, at first
glance, surprising result originates from the drastic
overestimation of the shell oscillations by v"* The
overestimation leads to a correlation potential which
is further away from the exact v, than the trivial
approximation v, = 0.

TABLE VI

HOMO eigenvalues (in mHartree) of spherical atoms obtained by self-consistent calculations: E, + EVF?
(FMP2) versus x-only (F), LDA [50], BLYP-GGA [6, 7], PBE-GGA [8], exact E, plus LYP correlation (FLYP), and
exact data [49].*

Atom Exact F LDA BLYP PBE FLYP FMP2 FHHEN
He 903 918 570 585 579 950 893 915
Li 198 196 116 111 119 200 198 198
Be 343 309 206 201 206 330 — 324
N 534 571 309 297 307 585 499 533
Ne 792 851 498 491 491 890 656 763
Na 189 182 113 106 113 189 191 189
Mg 281 253 175 168 173 274 305 273
P 385 392 231 219 233 403 385 386
Ar 579 591 382 373 378 624 557 576
[A] 22 178 184 178 31 28 8
A ax 59 333 318 324 98 136 29

* The energies resulting from the combination of the exact E, with the partially resummed functional (58) (FHHEN) are also listed. The
last two rows show the mean and maximum absolute errors, respectively, with respect to the exact ionization potentials [49].
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Taking the results of Sections 3.3 and 3.4 to-
gether, it is clear that EY'"? can only be considered a
first step. Higher-order correlation contributions
have to be included to arrive at qualitatively and
quantitatively satisfying results. However, before
addressing this aspect further, some remarks on the

nonlocality of oM™ seem to be in order.

3.5. QUASI-LOCALITY OF CORRELATION
POTENTIAL

In conventional correlated ab initio calculations for
systems involving heavier atoms virtual excitations of
the atomic core states are usually neglected. The same
is automatically true for corresponding pseudo-po-
tential calculations. As in the core region, the total
potential is dominated by the nuclear potential and
the Hartree potential remains close to its atomic form,
core orbitals are rather inert to a change of the chem-
ical environment. As a consequence, their contribu-
tion to the correlation energy cancels out in the energy
surface. However, the accurate treatment of particle-
hole excitations of core electrons requires virtual
states of very high energy. Neglect of core excitations
therefore greatly reduces the computational demands
without sacrificing accuracy.

In the case of orbital-dependent correlation func-
tionals a similar treatment is desirable. However, in
the context of DFT, the procedure for calculating
the correlation potential, i.e., the OPM integral
equation, introduces an additional coupling be-
tween the core and the valence region, which dif-
fers from the coupling originating from the intrinsic
nonlocality of first-principles functionals like EM"?.
It is thus not clear a priori whether the neglect of
virtual core excitations in the functional leaves the
correlation potential in the valence region invariant.

Figure 6 shows the MP2 correlation potentials of
Zn and Cu obtained by inclusion of differently
many core states in Ex"* The complete v} is
compared with the potentials that result from the
expression (25) with selected core states dropped
from the sums over i and j. All other ingredients of
the OPM procedure are left unchanged, in particu-
lar the Green'’s function (11). The OPM equation is
solved for given x-only orbitals and eigenvalues.
Figure 6 demonstrates that the neglect of a partic-
ular core shell leads to a modification of oM only
in that region in which this shell is localized. In
spite of the nonlocality of the OPM the final contri-
bution of a given shell is rather local. This quasi-
locality of the OPM justifies the neglect of core
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FIGURE 6. MP2 correlation potential of Zn and Cu
obtained by including differently many core states in
EMP2_ when calculating the OPM inhomogeneity (12).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]

excitations in the framework of orbital-dependent
xc-functionals.

However, Figure 6 also shows that this neglect
has to be consistent in the sense that one should not
break up shells: If the 3s and 3p states are dropped,
while the 3d orbital is kept in (25), the resulting
potential no longer agrees with the complete v}
in the region of the M-shell. The intra-shell overlap
is much too high to be neglected without affecting
vMP2, Consequently, only complete shells should be
dropped. It seems worthwhile to remark that the
same is true for the exact exchange.

4. Higher-Order Correlation Via
Partial Resummation

As is clear from the results discussed in Section
3, the inclusion of higher-order correlation is man-
datory in order to resolve several shortcomings of

3256 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY

DOI 10.1002/qua  VOL. 106, NO. 15



FIGURE 7. Diagrammatic representation of the hole—
hole Epstein-Nesbet perturbation series, EFHEN, in
which the diagonal contributions to the ladder diagrams
are resummed to infinite order. The Brandow conven-
tion [76] is used. Wiggle lines represent anti-symme-
trized two-electron integrals, summation over a, b, i, j is
implied.

EMP2. However, given the computational cost of
self-consistent FMP2 calculations, neither straight-
forward perturbation expansion to third or fourth
order, nor coupled-cluster-type resummations of
the perturbation series are particularly attractive in
the context of DFT. Thus, the question is whether
one can find a minimal extension of EX'" which just
resolves the most obvious deficiencies of this func-
tional, without introducing any additional compu-
tational effort?

The simplest class of diagrams allowing for re-
summation are the Epstein—Nesbet-type (EN) dia-
grams [74, 75], illustrated in Figure 7. If one restricts
the resummation to the hole-hole diagrams explic-
itly shown, the resulting correlation functional
reads [77]:

gLy 0OPOb) — b
c 4 “ g+ e — g, — g — (i) + flji)

ijab

(57)

Compared with a complete resummation of the EN
series, this expression has the advantage that no
additional matrix elements have to be evaluated:
(ijllif) and (ij|ji) have to be calculated anyway (in the
context of Ey; and E,). Moreover, (ijllij) — (ij]ji) = 0,
so that the hole-hole EN shift in the MP2 denomi-
nator is sign definite, thus enlarging the absolute
value of the denominator.

EFMEN a5 defined in Eq. (58) still suffers from its
lacking invariance under unitary transformations in
degenerate subspaces. For applications, it is there-
fore necessary to redefine EL"'*N as
EHHEN _ 1 s 0,0,0,0,/(ifllab) — (ij|ba)? ’
¢ 4 & T & T & &y — (i) + Gjllji)

(58)

where (ij[lij) implies averaging of (ijl[ij) over degen-
erate subspaces. The correlation functional (58) will

ORBITAL-DEPENDENT CORRELATION

be called the hole-hole Epstein-Nesbet (HHEN)
functional in the following.

In spite of the fact that EF"™™™N includes more
diagrammatic contributions than EX'", it is by no
means clear a priori that this quite restricted resum-
mation improves the final results (beyond the sta-
bilization of critical systems). Applications are re-
quired to verify that EI™™N represents some
progress.

Results obtained with the combination of the
exact E, and EF'™EN (FHHEN) are included in Ta-
bles I, V, and VI as well as Figures 3 and 8. First,
Table I demonstrates that the overestimation of
atomic correlation energies by EM™ is significantly
reduced by the HHEN functional. More important,
however, is the fact that EX"N no longer shows the
variational instability observed for the MP2 expres-
sion in the case of the Be atom: Self-consistency is
now easily attained, the HOMO-LUMO gap re-
mains finite. The corresponding self-consistent cor-
relation potential is displayed in Figure 8. The dra-
matic improvement over the pure MP2 potential
(evaluated with x-only orbitals) is obvious. The
same improvement is found when both functionals
are evaluated with the exact KS orbitals, as shown
in Figure 3. The variational stability of EX'™N is
reflected by the stability of the correlation potential
during the self-consistent iteration: The converged
potential is not much different from the potential
obtained from x-only orbitals. This implies that, in
practice, a perturbative calculation of v, on the basis

'E' I
o 1
g - I
= I
=) v
03 1| —— HHEN/EXX -
C) v —.  HHEN/SC
# 04 Y .
y -~ MP2EXX
i E
\
o5, 4
| | L |
0 ] 2 3 4 5
r [Bohr]

FIGURE 8. HHEN correlation potential for Be. Self-
consistent potential (HHEN/SC) versus perturbative re-
sult obtained from the x-only density (HHEN/EXX). For
comparison, the exact v, and the MP2 potential result-
ing from the x-only density are plotted. [Color figure
can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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of x-only results will be sufficient to provide a
much improved KS potential.

In view of Figure 8, it is no surprise that EX'N
also improves self-consistent total energies and IPs.
Table V demonstrates that the average error in
ground-state energies produced by EF*'™N is com-
parable to that of the BLYP functional. Moreover,
EFMEN is the first functional, which gives more
accurate HOMO energies than x-only calculations
(see Table VI). In other words: E?HEN is the first
functional for which the inclusion of the correlation
potential in self-consistent KS calculations does not
worsen the final results.

5. Concluding Remarks

The orbital-dependent approach opens a route
for the construction of fully nonlocal, first-princi-
ples xc-functionals. By now, application of the sim-
plest such functional, the exact exchange, is well
established both in the case of molecular systems
[19, 20, 24] and for solids [36—40, 42], with a num-
ber of efficient implementations being available
[78—-82]. As it is self-interaction free, the exact ex-
change allows us to deal with atomic negative ions
[24, 33], improves bandgaps [38, 42], and provides
an improved starting point for excited-state calcu-
lations based on the TDDFT or GW methods [83—
86].

The development of first-priniciples orbital-de-
pendent correlation functionals turns out to be a
much greater challenge and is still in its early stage.
It is obvious that the second-order perturbative
functional studied in this contribution can only
serve as a starting point. Nevertheless, this func-
tional demonstrates the scientific potential of im-
plicit correlation functionals: (i) it correctly ac-
counts for the dispersion interaction; and (ii) it
leads to realistic atomic correlation potentials, re-
producing both the correct asymptotic behavior
and the correct shell structure. The variational in-
stability of this functional and its drastic overesti-
mation of all correlation effects, on the other hand,
suggest that straightforward perturbation theory is
not the way to go. Partial resummation of the per-
turbation series is required, the most appropriate
scheme depending on the system to be addressed,
as well as on computational limitations. By incor-
porating the technically simplest class of higher-
order contributions, the hole-hole Epstein—Nesbet
diagrams, one obtains a functional that is variation-
ally stable for all neutral atoms as well as singly and

doubly ionized atoms considered so far. In addi-
tion, this functional yields much more accurate re-
sults than the second-order expression: The accu-
racy of the resulting ground state energies is
comparable to that of state-of-the-art GGA func-
tionals, and, even more important, the resulting
correlation potential appears to be first potential
whose inclusion in self-consistent calculations is
preferable to the complete neglect of ..
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