
DENSITY FUNCTIONAL THEORY OF FIELDTHEORETICAL SYSTEMSE. EngelInst. f�ur Theor. Physik, Universit�at Frankfurt, Robert Mayer Str.8-10,60054 Frankfurt am Main, GermanyAbstractThe �eld theoretical background of relativistic density functional theory isemphasized and its consequences for relativistic Kohn-Sham equations areshown. The local density approximation for the exchange energy functionalis reviewed and the importance of relativistic corrections for an accurate rep-resentation of the exchange functional is demonstrated.I. INTRODUCTIONIn view of the importance of relativistic e�ects for the physics and chemistry of heavyelements (see e.g. [1{3]) the analysis and further development of relativistic density func-tional theory (DFT) is of substantial practical interest. While the e�ects of relativistickinematics of the electrons on atomic structure and chemical bonds have been studied inmuch detail, the consequences of relativistic corrections to exchange and correlation, and inparticular of the retardation of the electron-electron interaction, have gained less attention,at least in the DFT context. Moreover, considering e.g. the spectroscopy of high-Z atomseven radiative corrections can no longer be neglected, thus emphasizing the fact that theappropriate theory for a fully relativistic ab initio description of atoms and molecules isquantum electrodynamics (QED). As an immediate consequence any consistent formulationof relativistic DFT must also be based on QED.A relativistic extension of the Hohenberg-Kohn (HK) theorem [4] has been given byRajagopal and Callaway [5]. The corresponding Kohn-Sham (KS) equations [6] have beenintroduced by Rajagopal [7] and independently by MacDonald and Vosko [8]. However, whilethese relativistic extensions of DFT concepts started from QED, the additional features in-troduced by QED as compared to nonrelativistic many body theory have only partially beentaken into account. In particular, the existence of antiparticles (negative energy states) al-lowing for the creation of virtual electron-positron pairs and the intrinsically related questionof renormalization have not been addressed. Recently, an attempt has been made [9] to dealwith these problems. The consequences, in particular for relativistic KS-equations, will bebrie
y reviewed in this paper. As a result of taking the �eld theoretical basis of relativisticDFT seriously one �nds that the latter approach in principle contains all radiative e�ectsinherent in QED, although at the price of a substantially more complicated selfconsistencyscheme. In the second part of this paper the local density approximation (LDA) to the rel-ativistic exchange-correlation energy functional [7,8,10{12] is reconsidered. On the basis of1



the LDA it is shown that relativistic corrections to the functional dependence of the exchangeenergy functional Ex[n] on the density are required for an accurate description of high-Zatoms, i.e. that using nonrelativistic approximations to Ex[n] in relativistic KS-calculationsintroduces substantial errors. Finally, the modi�cation of the correlation energy functionalby inclusion of vacuum corrections is illustrated within the RPA.II. FIELD THEORETICAL BASISThe starting point for the discussion of �eld theoretical systems is their Lagrangiandensity which completely speci�es the physics involved. Here we consider QED, which isthe appropriate quantum �eld theory for the description of relativistic atomic, molecularand condensed matter systems. In order to deal with these systems in a fully covariant wayone would have to associate dynamic degrees of freedom to both electrons and nuclei (atleast on a classical level). As usual in the context of atomic and molecular physics, however,we restrict ourselves to treating all nuclei as �xed, time-independent external sources, thuspartially breaking covariance by assumimg the existence of a common rest frame of all nuclei.The corresponding Lagrangian is given byL = Le + L
 + Lint (1)Le = 14�h ̂; (i@=! �m) ̂i+ h ̂(�i@= �m);  ̂i�L
 = �14(@�Â� � @�Â�)(@�Â� � @�Â�)� �2 (@�Â�)2Lint = � e ĵ� �Â� + V��ĵ� = 12h ̂; 
�  ̂i ; (2)where  ̂ and Â� denote the electron and photon �eld operators, respectively, while V�(x)represents the static potential generated by the nuclei. For the photon �eld we have chosento work in the covariant gauge. Moreover, both Le and the electronic four current ĵ�(x)have been written in a charge conjugation invariant form [13]. Note that due to the choiceof a particular Lorentz frame in which the external sources are at rest the gauge invarianceof the Lagrangian with respect to gauge transformations of the external potential has beenpartially broken: Only static gauge transformations are admitted within the rest frame ofthe nuclei.On the basis of Noether's theorem one can easily discuss the various symmetries of the�eld theory at hand. First of all, the continuity equation for the energy momentum tensorobtained from (1), @�T̂ �0(x) = 0 ; (3)which re
ects stationarity in the rest frame of the nuclei, allows to identify the Hamiltonian,Ĥ � Z d3x T̂ 00(x) : (4)Moreover, the continuity equation for the four current,2



@� ĵ�(x) = 0 ; (5)implies the conservation of the total charge,Q̂ = Z d3x ĵ0(x) = 12 Z d3x h ̂+(x);  ̂(x)i : (6)As a consequence any ground state resulting from (1) can be classi�ed with respect to itscharge. Furthermore, an analysis of the generalized angular momentum tensor immmediatlydemonstrates the intrinsic coupling of orbital angular momentum and electron spin exhibit-ing the fact that there is no direct relativistic analogue of spin-density functional theory.Finally, a discussion of the relevant discrete symmetry transformations (parity, charge conju-gation and time reversal) shows that the ground state resulting from (1) for an external fourpotential V � without any spatial symmetries is nondegenerate in general. Consequentlyno degeneracies remain to be lifted by introduction of additional (arti�cial) couplings ofthe electron �eld to external sources (as usual in the context of nonrelativistic spin-densityfunctional theory).Unfortunately, the Hamiltonian (4) does not allow to prove a relativistic HK-theoremwithout addressing the issue of renormalization as any direct evaluation of the ground stateexpectation values < 	jĤj	 > and < 	jĵ�j	 > leads to various divergencies. On onehand, there is the divergent vacuum energy of noninteracting electrons and photons, i.e. theenergy of all Dirac sea states in the electronic case and the zero point energy of the photons.These divergent energy contributions are usually removed by either normal ordering of theoperators in the Hamiltonian or by explicit subtraction of the vacuum expectation value ofthe energy of free electrons and photons,Ĥr = Ĥ� < 0jĤfreej0 > ; (7)such that Ĥr leads to a �nite ground state energy for noninteracting homogeneous systems.On the other hand, UV-divergencies which result from the perturbative treatment of theinteraction between electrons and photons as well as the external potential show up in boththe ground state energy and the ground state four current. These divergencies can be takencare of by the standard renormalization procedure of quantum �eld theory (applied to groundstate energies and four currents | see e.g. [9]), the main point being that all countertermsrequired to keep the ground state energy and four current �nite are completely determinedby speci�cation of V � and do not explicitly depend on the ground state j	 > correspondingto V �. This then allows to use the familiar nonrelativistic scheme [4] for the proof of theHK-theorem also in the relativistic situation where any serious proof must be based onrenormalized quantities (for details see [9]).III. RELATIVISTIC DENSITY FUNCTIONAL THEORYA HK-theorem for relativistic systems has �rst been formulated by Rajagopal and Call-away [5] (see also Refs. [8,14,15,9]). On the basis of (4) one �nds that the class of externalfour potentials just di�ering by (static) gauge transformations uniquely determines the as-sociated class of ground states as well as the corresponding gauge invariant ground state3



four current and vice versa,nV�(x)���V�(x) + @��(t;x); �(t;x) = ct+ �(x)o() nj	 > o() j�(x) :In other words, choosing some suitable representative of the class of ground states, i.e. �xingthe gauge once and for all, one ends up with the statement that the ground state is a uniquefunctional of the ground state four current, j	[j�] >. Consequently also all ground stateobservables are unique functionals of j� , the most important being the ground state energy,E[j�] =< 	[j�] j Ĥ j 	[j�] > ;where renormalization is implicitly understood. The minimum principle for ground stateenergies [16] then allows to obtain the exact j� by solution of a variational equation,��j�(r)�E[j�]� � Z d3x j0(x)� = 0 ; (8)where charge conservation has been imposed. Thus the statements of the relativistic HK-theorem are rather similar to its nonrelativistic counterpart. Note, however, that relativisticDFT also includes all radiative e�ects.Relativistic KS-equations have been introduced by Rajagopal [7] as well as MacDonaldand Vosko [8]. As for the HK-theorem, however, the problem of radiative corrections hasnot been addressed until recently [9]. Thus in the following we will brie
y summarize theKS-equations obtained on the �eld theoretical level. The starting point is a decompositionof the total energy functional into the kinetic energy functional of noninteracting particlesTs[j�], the external potential energy, a Hartree-like contribution EH [j�] and the exchange-correlation energy functional Exc[j�],E[j�] = Ts[j�] + e Z d3x j�(x)V�(x) + EH [j�] + Exc[j�] ; (9)which essentially represents the de�nition of Exc[j�]. While the functional dependence of Tson j� is not known explicitly, Ts can be expressed exactly in terms of the single particle fourspinors 'n(x) resulting from a given local potential,Ts[j�] = Ts;V + Ts;D (10)Ts;V = 12 Z d3x � X�n��m'n(x)h� i
 �r+mi'n(x)� X�n>�m 'n(x)h� i
 �r+mi'n(x)�� �T vacs;homTs;D = Z d3x X�m<�n��F 'n(x)h� i
 �r+mi'n(x) :Here Ts[j�] has been decomposed into a vacuum contribution Ts;V and the kinetic energyTs;D of the real electrons bound by the local potential (characterised by their eigenvaluesbetween �m and the Fermi energy �F ). Note that the di�erence between the kinetic energiesof negative (�n � �m) and positive energy (�n > �m) single particle states in Ts;V is a con-sequence of the charge conjugation invariant form of the Lagrangian, Eq.(1). Of course, this4



vacuum contribution requires renormalization, i.e. �T vacs;hom represents the (divergent) energyof the noninteracting free Dirac sea as discussed earlier. The four current of noninteractingparticles is obtained from the single particle spinors byj�(x) = j�V (x) + j�D(x) (11)j�V (x) = 12� X�n��m 'n(x)
�'n(x)� X�n>�m'n(x)
�'n(x)�j�D(x) = X�m<�n��F 'n(x)
�'n(x) ;which is �nite without additional counterterms. The direct electron-electron interactionenergy (Hartree term) is given byEH [j�] = �ie22 Z d3x Z d4y j�(x) D0��(x� y) j�(y) ; (12)where D0�� represents the free photon propagator, such that EH does not only contain theCoulomb interaction between the density j0 at x and that at y but also a current-currentinteraction term.Minimizing the total energy (9) on the basis of Eqs.(10-12) with respect to auxilliarysingle particle spinors 'n assumed to reproduce the exact j� of the actually interestinginteracting system then leads to the relativistic KS-equations,
0�� i
 �r+m+ eV= (x) + v=H(x) + v=xc(x)�'n(x) = �n'n(x) ; (13)where v�H(x) = e2 Z d3y j�(y)jx� yj (14)v�xc(x) = �Exc[j�]�j�(x) : (15)Of course, in (15) Exc[j�] is implicitly understood to be renormalized, i.e. renormalizationhas to be taken care of in the construction of any approximation for this functional (anexplicit example for a renormalized Exc[j�] will be given in Section IV).Note that in order to treat the vacuum polarization current j�V and the correspondingvacuum correction Ts;V consistently not only knowledge of all occupied states is required,but also all continuum states must be known which represents an enormous di�culty in realapplications. Moreover, although radiative corrections can not be ignored in spectroscopicanalyses of high-Z atoms (they e.g. reduce the ground state energy of Hg by roughly 18:9a:u:[17] such that their contribution is much larger than the total correlation energy) one wouldnot expect them to be relevant for chemical bonds as only the innermost orbitals are a�ected.Thus in practice all radiative corrections have been neglected so far (or at least dealt withperturbatively) leading to a considerable simpli�cation of the KS-scheme. However, it shouldbe emphasized at this point that this so-called no-sea approximation which represents aDFT-version of the projection on positive energy states can not be directly identi�ed withthe standard projection schemes due to the auxilliary character of the 'n (although in actualapplications one would expect little di�erence). In any case, a model study in which vacuumcorrections are included selfconsistently seems interesting from a conceptual point of viewin order to demonstrate the feasibility of the relativistic KS-equations, Eqs.(11,13-15).5



IV. RELATIVISTIC AND RADIATIVE CORRECTIONS TO THEEXCHANGE-CORRELATION ENERGYAs a matter of principle the relativistic exchange-correlation energy functional dependson the complete four current j� = (j0; j). However, in practice the only relativistic extensionavailable to date is the local density approximation (LDA) which automatically impliesvanishing j such that Exc in this approximation becomes a functional of the density j0 = nonly. The LDA nevertheless clearly demonstrates the importance of relativistic correctionsat least for the exchange part of the functional which is brie
y reviewed here.The corresponding exchange energy density eLDAx readseLDAx (n) = ie22 Z d4y D0�� (x� y) tr[
�G(x; y)
�G(y; x)] ; (16)where G(x; y) represents the electron propagator of the noninteracting relativistic homoge-neous electron gas. The remaining loop integration can be performed analytically [18{20,7,8],eLDAx (n) = c0xn 43�1� 32��� � 1�2arsinh(�)�2� ; (17)where � = (3�2n) 13m ; � = (1 + �2) 12 :Note that the exchange energy is of �rst order in the �ne structure constant so that vacuumcorrections do not contribute to eLDAx . In Eq.(17) eLDAx has been written as a product ofits nonrelativistic limit c0xn 43 and a relativistic correction factor. The latter is plotted inFig.1 as a function of �. Also shown in Fig.1 is the standard decomposition of (16) into thenonretarded Coulomb contribution eCoux and the remainder, the transverse term,eCoux = �e22 Z d3y tr[
0G(x; y)
0G(y; x)]4�jx� yj ����x0=y0 (18)etrx = etotalx � eCoux : (19)Thus, while eCoux just takes into account the relativistic kinematics of the electrons, etrxadds in the retardation of the electron-electron interaction. Fig.1 demonstrates that inthe nonrelativistic limit � ! 0 the Coulomb contribution dominates completely. However,while eCoux is only weakly dependent on �, the tranverse part of ex starts to increase rapidlywith � and dominates in the ultrarelativistic limit in which etotalx even changes its sign. InFig.1 the �-values at the r-expectation values of the 1s-orbitals obtained by nonrelativisticcalculations for Kr and Rn are also indicated in order to give an idea to which extent theserelativistic corrections actually a�ect the description of atomic systems. While from thiscomparison one would expect little e�ect on atoms smaller than Kr, the di�erence betweenthe nonrelativistic and relativistic forms of eLDAx should de�nitely be relevant for high-Zatoms. Moreover, these densities seem to indicate that the sign change at about � � 2:5 isnot really probed in atomic systems.An analysis of the various contributions to the exchange energy of neutral Mercurylisted in Table I illustrates the properties of ELDAx [n] and emphasizes the importance of6



a relativistic extension of Ex[n] for DFT-applications to high-Z atoms. As Table I showsthe relativistic correction to the Coulomb exchange energy is larger than the di�erencebetween the nonrelativistic LDA result and the exact relativistic ECoux [21], i.e. larger thanthe nonlocal correction to the nonrelativistic Ex. The total relativistic correction, on theother hand, is only about 2a:u: as Etrx almost cancels with the relativistic correction toECoux . Moreover, while the latter is underestimated by the LDA, Etrx is overestimated byas much as 50% leading to a total LDA-error about twice as large as in the nonrelativisticcase. Of course, the relativistic corrections to Ex are dominated by contributions from theinnermost orbitals [12], i.e. by the region close to the nucleus where the density is ratherinhomogeneous. It is thus not surprising that the LDA gives rather inaccurate results.The fact that the total relativistic EHFx is not much di�erent from the nonrelativisticexchange energy should not be interpreted as an indication that relativistic e�ects are irrel-evant for the exchange energy functional: When going from a nonrelativistic to a relativistictreatment two e�ects lead to changes in the value of Ex, (i) the di�erence between the self-consistent relativistic and nonrelativistic densities inserted in Ex[n], and (ii) the relativisticcorrections in the functional dependence of Ex[n] on the density. As the form of the densityis rather independent of the speci�c Ex[n] used for its calculation (i.e. is dominated by kinetice�ects) the former relativistic contribution shows up in any case: For Hg this componentamounts to 22a.u. (as can be seen from the third row of Table I) such that utilizing thenonrelativistic ELDAx [n] in a relativistic KS-calculation overestimates the exchange energydrastically. One thus concludes that an accurate relativistic exchange energy functionalmust contain nonlocal relativistic corrections (one e.g. could think of a relativistic extensionof the generalized gradient approximation).While to date the inclusion of radiative corrections in approximate Exc[n] seems notquite appropriate in view of the inaccuracies currently remaining in nonlocal and relativisticcorrections, it is nevertheless interesting from a conceptual point of view (and might evenbe necessary for special problems like the description of highly ionized high-Z atoms). Inorder to give an idea of the e�ect of radiative corrections on Exc[n] we consider the LDA forEc[n]. Within the RPA one �nds for the correlation energy density [22],eRPAc (n) = � i2 Z d4q(2�)4 Tr( ln �g �� + e2 �(0) �D;� (q)q2[1 + e2�(0)R (q2)] + i�� (20)� e2 �(0) �D;� (q)q2[1 + e2�(0)R (q2)] + i�) ;where the response function �(0);��(q) of the noninteracting homogeneous electron gas hasbeen decomposed into a vacuum contribution and the remainder,�(0);��(q) = �(0);��V (q) + �(0);��D (q)and the tensor structure of the lowest order vacuum polarization,�(0);��V (q) = �q2g�� � q�q���(0)R (q2) ;has been utilized. Note that counterterms had to be included to keep both �(0)(q2) (indi-cated by the index R) and the outer loop integration in Eq.(20) �nite. As to be expected7



the creation of virtual electron-positron pairs represented by �(0)R leads to a screening ofthe free electron-electron interaction. However, for electronic systems the vacuum-screenedcorrelation energy functional (20) still has to be evaluated.ACKNOWLEDGMENTSI would like to thank Profs. R. M. Dreizler and A. K. Rajagopal for very stimulating andhelpful discussions. Financial support by the Deutsche Forschungsgemeinschaft (project En265/1-1) is gratefully acknowledged.

8



REFERENCES[1] P. Pyykk�o, Chem. Rev. 88, 563 (1988).[2] M. Pepper and B. E. Bursten, Chem. Rev. 91, 719 (1991).[3] See also the contribution of T. Ziegler to this volume.[4] P. Hohenberg and W. Kohn, Phys. Rev. 136 B, 864 (1964).[5] A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973).[6] W. Kohn and L. J. Sham, Phys. Rev. 140 A, 1133 (1965).[7] A. K. Rajagopal, J. Phys. C 11, L943 (1978).[8] A. H. MacDonald and S. H. Vosko, J. Phys. C 12, 2977 (1979).[9] E. Engel, H. M�uller, C. Speicher, and R. M. Dreizler, in: Density Functional Theory,ed. by E. K. U. Gross and R. M. Dreizler, to be pub. in NATO-ASI Series B (Plenum,New York).[10] M. P. Das, M. V. Ramana, and A. K. Rajagopal, Phys. Rev. A 22, 9 (1980).[11] M. V. Ramana and A. K. Rajagopal, Phys. Rev. A 24, 1689 (1981).[12] M. V. Ramana, A. K. Rajagopal, and W. R. Johnson, Phys. Rev. A 25, 96 (1982).[13] A. O. G. K�all�en, in Handbuch der Physik, Band V, Teil 1 (Springer, Berlin, 1958).[14] H. Eschrig, G. Seifert, and P. Ziesche, Solid State Commun. 56, 777 (1985).[15] C. Speicher, R. M. Dreizler, and E. Engel, Ann. Phys. (N.Y.) 213, 312 (1992).[16] To the author's knowledge no rigorous proof of a minimumprinciple for the renormalizedground state energies obtained on the basis of (1) has been given in the literature sofar. Nevertheless, the existence of such a minimum principle seems very plausible for avariety of physical reasons.[17] W. R. Johnson and G. So�, At. Data Nucl. Data Tables 33, 405 (1985).[18] I. A. Akhiezer and S. V. Peletminskii, Sov. Phys. JETP 11, 1316 (1960).[19] E. E. Salpeter, Astrophys. J. 134, 669 (1961).[20] B. Jancovici, Nuovo Cim. XXV, 428 (1962).[21] While, as a matter of principle, this comparison should be based on the exact exchange-only energies calculated within the Optimized Potential Model (OPM), we here useHF-results for which many more details have been published. Note that the numericaldi�erence between HF- and OPM-exchange energies is much smaller than the error ofthe LDA (see e.g. E. Engel and S. H. Vosko, Phys. Rev. A 47, 2800 (1993)).[22] S. A. Chin, Ann. Phys. (N.Y.) 108, 301 (1977).[23] J. B. Mann and W. R. Johnson, Phys. Rev. A 4, 41 (1971).[24] E. Engel and R. M. Dreizler, unpublished (1994).
9



TABLESEx ECoux EtrxNRHF | -345.30 |NRLDA(NRLDA) | -331.88 |NRLDA(LDA) | -353.55 |HF -343.11 -365.28 22.17LDA(LDA) -313.09 -347.07 33.98TABLE I. Various contributions to the relativistic exchange energy of Hg: NRHF | nonrel.HF result, NRLDA(NRLDA) | nonrel. LDA functional with nonrel. LDA density, NRLDA(LDA)| nonrel. LDA functional with rel. LDA density, HF | rel. HF results [23,24], LDA(LDA) | rel.LDA functionals with rel. LDA density [12], (all energies are in a:u:).
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 nonrel. limit ultrarel. limit!"Coulomb"totaltransverse#erelx (�)enonrelx (�) "Rn"Kr � = �h(3�2n)13=(mc)FIG. 1. Relativistic corrections to the LDA exchange energy density: Total correction (17),Coulomb contribution (18) and transverse contribution (19). Also the �-values corresponding tothe densities of Kr and Rn at the r-expectation values of the 1s-orbitals are indicated.
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