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Abstract

The field theoretical background of relativistic density functional theory is
emphasized and its consequences for relativistic Kohn-Sham equations are
shown. The local density approximation for the exchange energy functional
is reviewed and the importance of relativistic corrections for an accurate rep-
resentation of the exchange functional is demonstrated.

I. INTRODUCTION

In view of the importance of relativistic effects for the physics and chemistry of heavy
elements (see e.g. [1-3]) the analysis and further development of relativistic density func-
tional theory (DFT) is of substantial practical interest. While the effects of relativistic
kinematics of the electrons on atomic structure and chemical bonds have been studied in
much detail, the consequences of relativistic corrections to exchange and correlation, and in
particular of the retardation of the electron-electron interaction, have gained less attention,
at least in the DFT context. Moreover, considering e.g. the spectroscopy of high-Z atoms
even radiative corrections can no longer be neglected, thus emphasizing the fact that the
appropriate theory for a fully relativistic ab initio description of atoms and molecules is
quantum electrodynamics (QED). As an immediate consequence any consistent formulation
of relativistic DF'T must also be based on QED.

A relativistic extension of the Hohenberg-Kohn (HK) theorem [4] has been given by
Rajagopal and Callaway [5]. The corresponding Kohn-Sham (KS) equations [6] have been
introduced by Rajagopal [7] and independently by MacDonald and Vosko [8]. However, while
these relativistic extensions of DFT concepts started from QED, the additional features in-
troduced by QED as compared to nonrelativistic many body theory have only partially been
taken into account. In particular, the existence of antiparticles (negative energy states) al-
lowing for the creation of virtual electron-positron pairs and the intrinsically related question
of renormalization have not been addressed. Recently, an attempt has been made [9] to deal
with these problems. The consequences, in particular for relativistic KS-equations, will be
briefly reviewed in this paper. As a result of taking the field theoretical basis of relativistic
DFT seriously one finds that the latter approach in principle contains all radiative effects
inherent in QED, although at the price of a substantially more complicated selfconsistency
scheme. In the second part of this paper the local density approximation (LDA) to the rel-
ativistic exchange-correlation energy functional [7,8,10-12] is reconsidered. On the basis of



the LDA it is shown that relativistic corrections to the functional dependence of the exchange
energy functional F,[n] on the density are required for an accurate description of high-Z
atoms, i.e. that using nonrelativistic approximations to F,[n] in relativistic KS-calculations
introduces substantial errors. Finally, the modification of the correlation energy functional
by inclusion of vacuum corrections is illustrated within the RPA.

II. FIELD THEORETICAL BASIS

The starting point for the discussion of field theoretical systems is their Lagrangian
density which completely specifies the physics involved. Here we consider QED, which is
the appropriate quantum field theory for the description of relativistic atomic, molecular
and condensed matter systems. In order to deal with these systems in a fully covariant way
one would have to associate dynamic degrees of freedom to both electrons and nuclei (at
least on a classical level). As usual in the context of atomic and molecular physics, however,
we restrict ourselves to treating all nuclei as fixed, time-independent external sources, thus
partially breaking covariance by assumimg the existence of a common rest frame of all nuclei.
The corresponding Lagrangian is given by
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where ;/A) and Au denote the electron and photon field operators, respectively, while V(@)
represents the static potential generated by the nuclei. For the photon field we have chosen
to work in the covariant gauge. Moreover, both L. and the electronic four current j”(:z;)
have been written in a charge conjugation invariant form [13]. Note that due to the choice
of a particular Lorentz frame in which the external sources are at rest the gauge invariance
of the Lagrangian with respect to gauge transformations of the external potential has been
partially broken: Only static gauge transformations are admitted within the rest frame of
the nuclei.

On the basis of Noether’s theorem one can easily discuss the various symmetries of the
field theory at hand. First of all, the continuity equation for the energy momentum tensor
obtained from (1),

0. 1"(x) =0 (3)
which reflects stationarity in the rest frame of the nuclei, allows to identify the Hamiltonian,
ﬁz/fxﬁww. (4)

Moreover, the continuity equation for the four current,
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implies the conservation of the total charge,
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As a consequence any ground state resulting from (1) can be classified with respect to its
charge. Furthermore, an analysis of the generalized angular momentum tensor immmediatly
demonstrates the intrinsic coupling of orbital angular momentum and electron spin exhibit-
ing the fact that there is no direct relativistic analogue of spin-density functional theory.
Finally, a discussion of the relevant discrete symmetry transformations (parity, charge conju-
gation and time reversal) shows that the ground state resulting from (1) for an external four
potential V* without any spatial symmetries is nondegenerate in general. Consequently
no degeneracies remain to be lifted by introduction of additional (artificial) couplings of
the electron field to external sources (as usual in the context of nonrelativistic spin-density
functional theory).

Unfortunately, the Hamiltonian (4) does not allow to prove a relativistic HK-theorem
without addressing the issue of renormalization as any direct evaluation of the ground state
expectation values < U|H|¥ > and < U[}*|¥ > leads to various divergencies. On one
hand, there is the divergent vacuum energy of noninteracting electrons and photons, i.e. the
energy of all Dirac sea states in the electronic case and the zero point energy of the photons.
These divergent energy contributions are usually removed by either normal ordering of the
operators in the Hamiltonian or by explicit subtraction of the vacuum expectation value of
the energy of free electrons and photons,

H, = H— < 0|Hpee0> (7)

such that H, leads to a finite ground state energy for noninteracting homogeneous systems.
On the other hand, UV-divergencies which result from the perturbative treatment of the
interaction between electrons and photons as well as the external potential show up in both
the ground state energy and the ground state four current. These divergencies can be taken
care of by the standard renormalization procedure of quantum field theory (applied to ground
state energies and four currents — see e.g. [9]), the main point being that all counterterms
required to keep the ground state energy and four current finite are completely determined
by specification of V* and do not explicitly depend on the ground state |¥ > corresponding
to V#. This then allows to use the familiar nonrelativistic scheme [4] for the proof of the
HK-theorem also in the relativistic situation where any serious proof must be based on
renormalized quantities (for details see [9]).

III. RELATIVISTIC DENSITY FUNCTIONAL THEORY

A HK-theorem for relativistic systems has first been formulated by Rajagopal and Call-
away [5] (see also Refs. [8,14,15,9]). On the basis of (4) one finds that the class of external
four potentials just differing by (static) gauge transformations uniquely determines the as-
sociated class of ground states as well as the corresponding gauge invariant ground state



four current and vice versa,

{Vi(z)
In other words, choosing some suitable representative of the class of ground states, i.e. fixing
the gauge once and for all, one ends up with the statement that the ground state is a unique

functional of the ground state four current, |[W[;”] >. Consequently also all ground state
observables are unique functionals of 77, the most important being the ground state energy,
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where renormalization is implicitly understood. The minimum principle for ground state
energies [16] then allows to obtain the exact j¥ by solution of a variational equation,

where charge conservation has been imposed. Thus the statements of the relativistic HK-
theorem are rather similar to its nonrelativistic counterpart. Note, however, that relativistic
DFT also includes all radiative effects.

Relativistic KS-equations have been introduced by Rajagopal [7] as well as MacDonald
and Vosko [8]. As for the HK-theorem, however, the problem of radiative corrections has
not been addressed until recently [9]. Thus in the following we will briefly summarize the

KS-equations obtained on the field theoretical level. The starting point is a decomposition
of the total energy functional into the kinetic energy functional of noninteracting particles
Ts[7"], the external potential energy, a Hartree-like contribution Fpy[j*] and the exchange-
correlation energy functional F,.[7%],
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which essentially represents the definition of £,.[7#]. While the functional dependence of T
on j7* is not known explicitly, Ts can be expressed exactly in terms of the single particle four
spinors @, (@) resulting from a given local potential,
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Here T[7”] has been decomposed into a vacuum contribution Ty and the kinetic energy
Ts p of the real electrons bound by the local potential (characterised by their eigenvalues
between —m and the Fermi energy e¢r). Note that the difference between the kinetic energies
of negative (¢, < —m) and positive energy (€, > —m) single particle states in Ty is a con-
sequence of the charge conjugation invariant form of the Lagrangian, Eq.(1). Of course, this
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vacuum contribution requires renormalization, i.e. 6774¢
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represents the (divergent) energy
of the noninteracting free Dirac sea as discussed earlier. The four current of noninteracting

particles is obtained from the single particle spinors by
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which is finite without additional counterterms. The direct electron-electron interaction
energy (Hartree term) is given by

Euli] = i [ @ [ dy (@) Dh, e - v) ) (12)

where D?w represents the free photon propagator, such that £y does not only contain the
Coulomb interaction between the density 7% at @ and that at y but also a current-current
interaction term.

Minimizing the total energy (9) on the basis of Eqs.(10-12) with respect to auxilliary
single particle spinors ¢, assumed to reproduce the exact ;" of the actually interesting
interacting system then leads to the relativistic KS-equations,
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Of course, in (15) E,.[s*] is implicitly understood to be renormalized, i.e. renormalization
has to be taken care of in the construction of any approximation for this functional (an
explicit example for a renormalized E,.[j*] will be given in Section IV).

Note that in order to treat the vacuum polarization current j{, and the corresponding
vacuum correction Ty consistently not only knowledge of all occupied states is required,
but also all continuum states must be known which represents an enormous difficulty in real
applications. Moreover, although radiative corrections can not be ignored in spectroscopic
analyses of high-Z atoms (they e.g. reduce the ground state energy of Hg by roughly 18.9a.u.
[17] such that their contribution is much larger than the total correlation energy) one would
not expect them to be relevant for chemical bonds as only the innermost orbitals are affected.
Thus in practice all radiative corrections have been neglected so far (or at least dealt with
perturbatively) leading to a considerable simplification of the KS-scheme. However, it should
be emphasized at this point that this so-called no-sea approximation which represents a
DFT-version of the projection on positive energy states can not be directly identified with
the standard projection schemes due to the auxilliary character of the ¢, (although in actual
applications one would expect little difference). In any case, a model study in which vacuum
corrections are included selfconsistently seems interesting from a conceptual point of view
in order to demonstrate the feasibility of the relativistic KS-equations, Eqs.(11,13-15).



IV. RELATIVISTIC AND RADIATIVE CORRECTIONS TO THE
EXCHANGE-CORRELATION ENERGY

As a matter of principle the relativistic exchange-correlation energy functional depends
on the complete four current j* = (j°, 7). However, in practice the only relativistic extension
available to date is the local density approximation (LDA) which automatically implies
vanishing 7 such that F,. in this approximation becomes a functional of the density j° = n
only. The LDA nevertheless clearly demonstrates the importance of relativistic corrections
at least for the exchange part of the functional which is briefly reviewed here.

The corresponding exchange energy density eZP4 reads

EA () = [ty DO (o= y) el Gl Gl )] (16)

where G/(x,y) represents the electron propagator of the noninteracting relativistic homoge-
neous electron gas. The remaining loop integration can be performed analytically [18-20,7.8],
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Note that the exchange energy is of first order in the fine structure constant so that vacuum
corrections do not contribute to efP4. In Eq.(17) efP4 has been written as a product of
its nonrelativistic limit col,n% and a relativistic correction factor. The latter is plotted in
Fig.1 as a function of 3. Also shown in Fig.1 is the standard decomposition of (16) into the

nonretarded Coulomb contribution ¢Z°* and the remainder, the transverse term,
Gy, z
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Thus, while e just takes into account the relativistic kinematics of the electrons, el

adds in the retardation of the electron-electron interaction. Fig.l1 demonstrates that in

the nonrelativistic limit 8 — 0 the Coulomb contribution dominates completely. However,

Cou ig only weakly dependent on 3, the tranverse part of e, starts to increase rapidly

total

while e/
with and dominates in the ultrarelativistic limit in which €?** even changes its sign. In
Fig.1 the f-values at the r-expectation values of the 1s- orbltals obtained by nonrelativistic
calculations for Kr and Rn are also indicated in order to give an idea to which extent these
relativistic corrections actually affect the description of atomic systems. While from this
comparison one would expect little effect on atoms smaller than Kr, the difference between
the nonrelativistic and relativistic forms of efP4 should definitely be relevant for high-Z
atoms. Moreover, these densities seem to indicate that the sign change at about g ~ 2.5 is
not really probed in atomic systems.

An analysis of the various contributions to the exchange energy of neutral Mercury

listed in Table I illustrates the properties of EZPA4[n] and emphasizes the importance of



a relativistic extension of F,[n] for DFT-applications to high-Z atoms. As Table I shows
the relativistic correction to the Coulomb exchange energy is larger than the difference
between the nonrelativistic LDA result and the exact relativistic £S°% [21], i.e. larger than
the nonlocal correction to the nonrelativistic £,. The total relativistic correction, on the
other hand, is only about 2a.u. as E' almost cancels with the relativistic correction to
ES. Moreover, while the latter is underestimated by the LDA, E!" is overestimated by
as much as 50% leading to a total LDA-error about twice as large as in the nonrelativistic
case. Of course, the relativistic corrections to K, are dominated by contributions from the
innermost orbitals [12], i.e. by the region close to the nucleus where the density is rather
inhomogeneous. It is thus not surprising that the LDA gives rather inaccurate results.

The fact that the total relativistic F¥" is not much different from the nonrelativistic
exchange energy should not be interpreted as an indication that relativistic effects are irrel-
evant for the exchange energy functional: When going from a nonrelativistic to a relativistic
treatment two effects lead to changes in the value of E,, (i) the difference between the self-
consistent relativistic and nonrelativistic densities inserted in E,[n], and (ii) the relativistic
corrections in the functional dependence of E,[n] on the density. As the form of the density
is rather independent of the specific £,[n] used for its calculation (i.e. is dominated by kinetic
effects) the former relativistic contribution shows up in any case: For Hg this component
amounts to 22a.u. (as can be seen from the third row of Table I) such that utilizing the
nonrelativistic £ELP4[n] in a relativistic KS-calculation overestimates the exchange energy
drastically. One thus concludes that an accurate relativistic exchange energy functional
must contain nonlocal relativistic corrections (one e.g. could think of a relativistic extension
of the generalized gradient approximation).

While to date the inclusion of radiative corrections in approximate F,.[n] seems not
quite appropriate in view of the inaccuracies currently remaining in nonlocal and relativistic
corrections, it is nevertheless interesting from a conceptual point of view (and might even
be necessary for special problems like the description of highly ionized high-Z atoms). In
order to give an idea of the effect of radiative corrections on F,.[n] we consider the LDA for
E.[n]. Within the RPA one finds for the correlation energy density [22],

. e H(O) v
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2/ (2m) @1 + 21 (¢2)] + ic
PRV U) }
PlL+ TR (?)] + e

where the response function I1(9#¥(¢) of the noninteracting homogeneous electron gas has
been decomposed into a vacuum contribution and the remainder,

H(O)vﬂ'y(q) — H§9)7My(q) _I_ Hg)vﬂl/(q)
and the tensor structure of the lowest order vacuum polarization,
1P (q) = (g™ — ¢"¢") TR (¢*) .

has been utilized. Note that counterterms had to be included to keep both I1(%)(¢?) (indi-
cated by the index R) and the outer loop integration in Eq.(20) finite. As to be expected
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the creation of virtual electron-positron pairs represented by Hg) leads to a screening of
the free electron-electron interaction. However, for electronic systems the vacuum-screened
correlation energy functional (20) still has to be evaluated.
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TABLES

Ex Egou E;,;r
NRHF — -345.30 —
NRLDA(NRLDA) — -331.88 —
NRLDA(LDA) — -353.55 —
HF -343.11 -365.28 22.17
LDA(LDA) -313.09 -347.07 33.98

TABLE I. Various contributions to the relativistic exchange energy of Hg: NRHF — nonrel.
HF result, NRLDA(NRLDA) — nonrel. LDA functional with nonrel. LDA density, NRLDA(LDA)
— nonrel. LDA functional with rel. LDA density, HF — rel. HF results [23,24], LDA(LDA) — rel.
LDA functionals with rel. LDA density [12], (all energies are in a.u.).
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