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1 Introduction

A few numbers will illustrate that it is necessary to develop a relativistic version
of density functional theory (DFT) [1, 2, 3, 4, 5, 6]. The relative relativistic
correction

Arel - Anrel
Anrel

is about 30% for the ionisation potential of the Gold atom, —13% for the bond
length of the AuH molecule and about 50% for the dissociation energy of this
system [7]. The error can even be larger for sensitive quantities like the electron
affinity. For this quantity one finds

Anrer = 0.10eV Aret = 0.67¢V
on the level of the Hartree Fock (HF) approximation [8], and
Aprer = 1.02eV Apep = 2.28eV

on the level of the configuration interaction approach [7, 9]. Obviously, relativistic
and correlation effects modify results on a comparable level.

While it is still possible to deal with relativistic effects in smaller systems
in terms of traditional methods, the treatment of larger systems with heavier
constituents will require a relativistic extension of DFT (RDFT). One of the
questions that has to be answered in this context is: How much of the relativistic
correction is due to kinetic effects (replace the nonrelativistic kinetic energy by
its relativistic counterpart) and how much is due to exchange-correlation effects?
The answer to this and other questions is the goal of our endeavours.

The proper frame for the discussion of RDFT is a suitable field theoretical
formulation [10, 11, 12] of the problem at hand. For the case of Coulomb systems
such a theory is quantum electrodynamics (QED). One might ask: Why not base
the discussion on the many-body Dirac equation, as eg. in standard Dirac-Fock
calculations?

Here is a more extensive answer. As one knows, Dirac theory leads to a
positive definite one particle density

n(z) = P(x)y () = vF (2)d() -
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On the other hand, the energy spectrum contains a negative energy continuum.
In order to prevent disaster, one has to invoke the concept of a filled Dirac sea.
Holes in this sea can be associated with antiparticles.

One possibility to handle this situation in an economic fashion is the transi-
tion to a field theoretical formulation, which is, for present purposes, indicated
for the case of the free particle problem. The free Dirac equation (with A = ¢ = 1,
as usual) is

(i Emp@) =0 =t = (1)

A general solution of this equation (a spinor wave packet) is

¢(x):/d3k2[b,(k)um(k)e—m+c,(/<;)v<l>(k)em} , ko=A/E*+m? .

The notation is

— positive, negative energy spinors u(), v(®)
— energy-momentum four vector k = (ko, k)
— Minkowski space scalar product k -z = kot — k-2 .

In the process of field quantisation the spinor wave functions are replaced by
field operators,

W), ot (@) — ()9t (@) |
by demanding that canonical, equal time anticommutation relations hold,
{ﬁa(ﬁ’t)’i);(g’t)}:60656(3)(£_g) (O"BZ 1""4) : (2)
This requires that the Fourier coefficients b;, ¢; be replaced by operators,
bi(k) = bi(k) b (k) = bf (k)
alk) = ¢ (k) (k) = ¢ (k) .

ke

In order to incorporate the concept of the Dirac sea directly, one reinterprets
the operators associated with the negative energy solutions as

a(k) = df (k) et (k) = di(k)

the interpretation being: The destruction of a particle with negative energy cor-
responds to the creation of an antiparticle with positive energy (and vice versa).
This language refers to a vacuum state that is free of particles rather than the
filled sea,

by (k)|vac >=0 , di(k)|vac >=10 .

The corresponding relativistic field operator

b(x) = /dSkZ {El(k’)u(”(/ﬁ)e_“”+c?f’(k)v(’)(k)eik'f 3)
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then describes the destruction of a particle or the creation of an antiparticle.
YT () describes the creation of a particle and the destruction of an antiparticle.
Other operators can then be constructed like

(i) the charge operator

Q= —c [ @3 [i (in(e) — dF (k)i h) (4)

= _e(Npart - Nantipart) ) (5)
where infinite but trivial vacuum expectation values have been subtracted.
One then notes that ¢ (z) raises the charge by one unit, while ¢/* (z) decreases

the charge correspondingly.
(i) the free Hamiltonian

1= [ & @) iy 7+ mpie) ()
= / 43k i[éf(k)i),(k) — di(k)df (k)] ko

2
= [ @SSR + dF (R ko + o (7)
=1
so that one can redefine the trivially renormalised Hamiltonian
Hgp = H— < vac|H|vac > = /d3k ko{ Npart (k) + Nantipart (k) } - (8)

Contrasting once more energy and charge in Dirac and field theory we note for
a free particle (charge —e)/antiparticle:

charge | energy
negative definite |positive/negative
negative/positive| positive definite

Dirac theory
field theory

Obviously, the second line corresponds to the experimental solution.

In addition, the field theoretical formulation of the interacting problem (the
coupling to the electromagnetic field can be introduced by invoking local U(1)
gauge invariance) involves for instance the features:

(i) The interaction between the fermions is described by the photon propaga-
tor rather than the Coulomb interaction. In lowest order this propagator
describes the exchange of a free photon,

DL?,)(x,y) —
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It contains retardation and magnetic effects. One may even consider more
exact forms like

Dy (z,y) = oo + MQW+ e

involving lowest order vacuum polarisation effects.
(i1) The full machinery of many-body physics [13, 14] can be activated directly,
with fermion propagators, Dyson equations etc.

If one accepts these statements as an answer to the question posed, then one
can start to look at a selection of the background material that is necessary for
the discussion of RDFT. This is done in section 2, which is entitled

2 Assorted Remarks on Vacuum QED, the Relativistic
Homogeneous Electron Gas and QED with External
Potentials

A system of Dirac particles (charge —e) and antiparticles, which interact by the
exchange of photons is characterised by the QED Lagrangian density

Loep () = Le(x) + Ly(2) + Line(2) (9)

The three terms represent the free Dirac Lagrangian of the fermions

£o(w) = SN 0u(@) — QT 6(e)] ~ b)) (10

the free photon Lagrangian

and the interaction term
Lint(r) = —63V(1’)AV($) : (12)
The following explanatory remarks are necessary.

(1) 1/3(9:) and Au(x) are the fermion and photon field operators, the actual elec-
tromagnetic field is characterised by the field tensor

Fu() = 0y (2) = 0, A, (x) . (13)

j”(x) i1s the fermion four current. It is most conveniently specified in the
commutator form

() = 5 [0), @) (14)

which explicitly expresses charge conjugation invariance.
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(i1) The quantisation of the free photon problem is more complicated due to the
transversality of the photon field. The form of the Lagrangian specified refers
to a covariant gauge (and thus involves the so-called gauge fixing term).
Standard gauges are the Feynman gauge (A = 1) and the Landau gauge
(A = ©0). The photon sector of the Fock space is supposed to be specified in
terms of the Gupta-Bleuler indefinite metric quantisation. We will, however,
not display any details concerning this point.

Essentially, all results available for (vacuum) QED systems are based on pertur-
bation theory. The basic quantities used in this context are the fermion and the
photon propagators (where T' denotes time-ordering)

Spwac(®, Y)ap = —i < vac|TVa ()i 5(y)|vac > (15)
== / d4—p SFvac(p)ocﬁ e—ip~(x—y) (16)
(2m)*
Duy,vac(xa y) = —ie” < vaC|TAN (x)AV(y”vaC > (17)
d*q ;
= D v,vac ~ig(=-y) . 1
[ G et -

The fact that both quantities depend only on the difference of the Minkowski
coordinates is an expression of the translational invariance of the theory.

In lowest order, these propagators can be calculated directly. For the fermion
propagator (describing the time development of a free fermion forward and of a
free anti-fermion backward in time) one finds

0 ¥+m
Sl(w,iac(p)aﬁ = (m) . (19)

In diagrammar this quantity will be denoted by

P
S aePap =0 —— 8 . (20)

The photon propagator depends on the choice of gauge. In Landau gauge one
finds

4rme? quq
DY) = ——— g, — £ 21
ur ((]) (]2 e {gu (]2 } ’ ( )

the second term in the bracket i1s not present in Feynman gauge. In diagrammar
we represent this quantity by

D(0) 4
zDW (q) = o v . (22)

We shall later use the decomposition of this propagator into a nonretarded
Coulomb (longitudinal) and a transverse contribution,

D) (g) = DOE(q) + DY) (q) | (23)

ny
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with the longitudinal part
Ame?
D" (q) = Jougow =3~ - (24)
The link between the propagators is provided by the vertex, which describes
the emission and the absorption of a photon by a fermion. In momentum space,
the lowest order vertex just corresponds to a y-matrix provided one implies four
momentum conservation

HeP1 — P2
FOes = — A (25)
P1 P2
a f

In the next order of perturbation theory (characterised by an additional free
photon line), the contributions are

q
st p) = pwp 26
F,vac( ) p—yq ( )
P
iDL acl9) = Q“NQMQ ~ (27)
P—4q

From these diagrams one extracts the lowest order contributions to the basic
two point functions of the theory: the electron selfenergy,

[ d? v
Sihp)= p-q @q = 1/@734 DI (97" Sobaclp — )7, (28)

and the vacuum polarisation,

v
. d*p
_ZHl(i(l)/),vac(Q) = pr+ q9=—- /(271_)4 tr {WNS(F?Zac(p)VVS(F?J)/ac(p - q) : (29)
H

In addition, one finds for the next order contribution to the vertex function (a
three point function)
p2 —
F;S,lv)ac(Pl,Pz) =4 k
p1—k

[ d*k
= z/(%)4 DO (k)7 S oo (1 — K)7u S e (p2 — k)" . (30)
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If one evaluates the integrals over the loop momenta, one finds that neither of
the three quantities (M 7 and 'Y is well defined. One encounters UV-
divergencies (divergencies due to large values of the loop momenta). One way
to deal with these divergencies and to endow the three quantities with a mean-
ing is the counterterm technique based on dimensional regularisation [15]. In
this method one first evaluates the integrals indicated in (1,d — 1)-dimensional
Minkowski space (rather than in the (1,3)-dimensional space). These results can
then be analytically continued to noninteger d, so that the physically interesting
limit d — 4 can be taken. The results (involving an expansion about this limit)
are

2

e
V) = Toma L () (0 4+ 4m) + D10 e (9) (31)
I'(s
Hl(i(l)/),vac(Q) = (ngNV - quV){ 12(71.3 +w1(/(31)c,finite(q2)} (32)
(1 ¢’ (1)
FN,vac(pl’pZ) = WF(S)VN + Fu,vac,fm”e(pl’pz) ' (33)

The divergent part of the loop integrals is isolated in each case in the I'-function

F(s)zF(%(él—d)) 7% o (34)

For the finite remainders, the limit d — 4 can be taken directly. The rather
lengthy expressions that result are not of interest for the moment.

Two additional features might be of interest though: The tensorial structure
of the vacuum polarisation is a consequence of the general gauge invariance,

¢ Ou(q) =0 . (35)
Another manifestation of gauge invariance is the Ward-Takahashi identity,

(pu _p;J)szlac(pap/) = Evac(p/) - Evac(p) y (36)

which is satisfied by the divergent (as well as the finite) contributions to X and
I

The next step, the actual renormalisation, amounts to a redefinition of the
physical constants and operators in the initial Lagrangian, leaving the physical
implications of this Lagrangian unmodified. The renormalisation procedure can
readily be demonstrated (on the one loop level) for the case of mass renormali-
sation. Using the Dyson equation

Shwac(p) ™ = S50 ()7 = Dac(p) = — m — Zyac(p) (37)

one finds to first order

_ 62 62
L™ = (14 510 ) = (14 70)) = )+ 69
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In order to compensate the terms that diverge in the limit d — 4, one adds to
the "unrenormalised Lagrangian” a ”counterterm Lagrangian” of the same form.

The unrenormalised Lagrangian has the form (9) originally given with phys-
ical constants (m,e) and physical field operators. The counterterm Lagrangian
for (fermion) mass renormalisation is

Locr = P(#)(iAD — BYi(z) . (39)
The renormalised fermion Lagrangian is thus
Ler=Leunren +Lecr

= U (2)(i(1+ A)P — (m + B)) () . (40)

Evaluating the electron propagator on the one loop level as before (with the
same L;n¢) one finds

SF,vac,R(p) ! = ﬁ (1 + A + 1671'2 F(S)) (41)
B e? (1)
—m (1 + - + RF(S)) - Evac,fmz’te(p) .

The obvious choice
2 2

€ e‘m
leads to a finite result, in diagrammar,
The additional diagram represents the counterterm contribution
— ol 0
T = S ) A+ BISE L (v) (43)

The form invariance of the Lagrangian under this renormalisation procedure is
then implemented by defining the wavefunction (actually field operator) renor-
malisation

Yoare(x) = [1+ AIV? (x) (44)
and the bare mass
Mpare = M — dm (45)

(to the given order), so that
Ee,R == 'J)bare(l‘)(i@ - mbare)'lz)bare(l;) 5 (46)

that is the counterterms necessary to keep £(1) finite have been completely
absorbed in a redefinition of the ingredients of the (free) fermion Lagrangian.
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An equivalent procedure can be carried out for H,(l?,)ywc addressing L., as

well as for F,S}U)GC addressing L;,;. The argumentation can be extended to any
order, after a discussion of overlapping divergencies, that occur for instance in
the diagram

We shall return to some aspects of the renormalisation problem when we talk
about the derivation of explicit relativistic functionals.

We then leave vacuum QED and discuss briefly the simplest relativistic many
fermion problem: The Relativistic Homogeneous Electron Gas (RHEG).
This system is characterised by a ground state that contains N electrons per
volume V|

N

The relativistic version is essentially the same model as the nonrelativistic equiv-
alent with the difference that the kinetic energy is replaced by the relativistic
form and the Coulomb interaction is replaced by the exchange of photons.

The fermion propagator reads

Sp(@,y) = —i < ¢olT(W(@)P(y)|bo > , (48)

with |¢g > denoting the ground state of the RHEG. This differs from the vacuum
propagator Sgyqc already in lowest order as Sp yqc describes free electrons and
positrons while Sp of the RHEG describes electrons and positrons embedded in
a medium.

The result of an explicit, straightforward evaluation can be expressed in the
form

i) = S hae9) + Spp (p) (49)
with
. +m
S 0) = 21 0 — ) EE™ @kr — o) (50)
P
Ey=[p*+m*"?  kp = (377003 . (51)

The quantity in Eq.(50) is the contribution to the propagator due to finite density
of real electrons. An alternative decomposition of the propagator in lowest order
can be given,

0 0 0
S () = S () + 54 () - (52)
This decomposition contains a contribution due to the electrons,

SO (p) = Wrtm) Olpl —kr) | Okr —|pl)
F+\P) = 2E, P —E, +ic | p°— E, —ie )

(53)
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with

Pi = (£L,,p) | (54)
(which has some resemblance to the corresponding nonrelativistic propagator)
and a positron contribution,

S () = ;gpm) (po +_Ei_l.€) . (55)

The lowest order fermion propagator of the RHEG will in the following be de-
noted by a double line

SO = =—. (56)
The other two basic elements of perturbation theory, the free photon propagator

and the simple vertex, remain unchanged. On the other hand, the full photon
propagator, which in this case is given by

Dy (2, y) = —ie* < ¢o| T(Au(2)Au (y))d0 > (57)

and the full vertex differ from the vacuum QED result. The reason is that not
only et —e™ pairs screen the bare interaction but also virtual electron-hole pairs.

The discussion of the ground state energy of the RHEG is the basis of the local
density approximation (LDA), as in the nonrelativistic case. We shall discuss
the necessary details in connection with the explicit consideration of this limit
in section 4. We shall see there that the renormalisation procedure, which is also
necessary for this system, concerns essentially only the vacuum aspects involved.

In the discussion of inhomogeneous systems (like atoms, molecules etc.) the
fermions have to be subjected to an additional external field, which represents
the fixed nuclei and/or any other external perturbation present. In this case
the original QED Lagrangian has to be supplemented by an external interaction
term,

L(x) = Loep(7) + Leat(w) (58)
Leg(x) = —e}”(x)Vl,(x) . (59)

For the discussion of stationary systems the external four vector is static,
Vi(z) = Vu(z) (60)
It will be denoted in diagrammar as
V— onux (61)

One can then show (with the aid of Noether’s theorem if necessary) that the
corresponding energy is conserved, so that the Hamiltonian is given by

H= /d?’x TOO(J:) (62)
3z

= [ @) (~iy- T+ myi(a) (63)
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1 - - - -
— S—/de{ﬁoAy(l‘)ﬁoA”(r) + VA (2) ~ZA”(1‘)}
T

+e / 3z 3“(1‘)121”(36) +e / >z 3“(1‘)‘/”(@) .
The renormalised Hamiltonian has the form
Hp=H-VEV4+CT , (64)

involving the subtraction of the vacuum expectation value and the addition of
counterterms analoguous to the counterterms of the Langrangian.

3 Foundations

The first topic is the extension of the Hohenberg-Kohn (HK) theorem [16] to the
case of relativistic QED systems.

3.1 The relativistic Hohenberg-Kohn theorem

This extension was first formulated by Rajagopal and Callaway [17, 18] (and by
MacDonald and Vosko [19]). As expected for a relativistically covariant situation,
the theorem states that the ground state energy is a unique functional of the
ground state four current,

Bl) =PI+ [ e Vi) (63

with F' being a universal functional of j#. There are, nonetheless, a number of
points that should be discussed more closely.

The arguments used in the original proof are based on QED, but the question
of possible divergencies was ignored. As the proof relies (as in the nonrelativistic
case) on the celebrated ”reductio ad absurdum”, one has to make sure that well
defined, finite quantities for the ground state energy and the four current are

involved [20],
Ey=< @0|f]|§150 > — < vac |lffe + lf]v + f[mt| vac > +AEqcr  (66)
(@) = < Polj" ()| B0 > +A7" (2) (67)
that is quantities including all vacuum subtractions and counterterms (A). In
addition, one has to make sure that the structure of the counterterms does not

invalidate the proof. With these precautions, one can establish the usual chain
of unique maps

tt

There exists a one-to-one correspondence between the class of external potentials
differing by a static gauge transformation and the corresponding class of ground

Vo + 0,4} = {10 > ‘ with [0 > from V,, + 9,4} = j*(2) . (68)
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states. This class of physically equivalent ground states is uniquely determined
by the ground state four current. As a consequence one can express all ground
state observables (including the energy) as a unique functional of the ground
state four current

O[j*] =< ®o[j*] | O | Do[j*] > +A0 = VEV . (69)

As a side remark one may note, that both the ground state energy and the four
current are gauge invariant quantities.
For the case of a purely electrostatic, external potential,

Vi (z) = {Vo(ﬁ), Q} : (70)

the proof can be repeated using just the zeroth component of the four current
(i.e. the charge density) j%(z) = n(z) [21]. The ground state energy and all
variables are then functionals of the density alone. It should be emphasised that
this does not imply that the spatial components of the current vanish in this
case. It only implies that the three current has to be interpreted as a functional
of n(z), R

j(z) =< Po[n] | j(z) [ Po[n] > = j([n],2) . (71)
With the Ritz principle, already involved in the details of the proof of the HK
theorem, one may formulate the basic variational principle of RDFT as

Jw{Eo[jl’]—ﬂ/dSy jo(g)} =0 . (72)

The subsidiary condition implies charge (rather than number) conservation.

This variational principle is utilised directly in relativistic extended Thomas-
Fermi (RETTF) models [22, 23, 20], in which an approximate density functional
representation of Fg[j7] is specified. The mainstay of applications are, however,
the

3.2 Relativistic Kohn-Sham equations

The first step necessary to set up this scheme [24] is the representation of the
exact four current of the interacting system in terms of auxiliary spinors [20],

3(@) = Jac(@) + ip(2) - (73)
The vacuum polarisation current jY,. is given as [25]
0 1 _ v — v
pew=3{ ¥ awraw- ¥ awrao).
er<—m —m<e€g

where we do not specify a necessary counterterm in this equation and in the
following. The current due to occupied discrete orbitals is

b= > Bl el (75)

—m<ep<er
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This result follows directly from the charge conjugation invariant form of the
four current operator (which has been specified beforehand) if one considers a
system of noninteracting particles.

In the same vein one defines the noninteracting kinetic energy (including a
mass term)

T505"] = Ts wacli"] + Ts p (3] (76)
Todil=3 [ @ { ¥ a@]-i T+maw ()
er<—m
- > @(ﬁ){—iz'Zer}s%(&)} :
—m<eg
Tolt)= [¢ 3 m@[-n Tl . @)
—m<er<er

T vae 1s the kinetic contribution to the so-called Casimir energy [11] (again no
counterterms displayed), while T, p results from bound real electrons.
Adding and subtracting T as well as the covariant Hartree energy,

Bl =5 [ & [ d'y @) DR -0 ) (79)

for time independent currents

5 . )
= [ [ &
to the total energy, one can rearrange the ground state energy as
Eo[j*] = T[5*] + Eeat[1*] + Enlj*] + Eoc[i*] (81)
with the exchange-correlation energy

Em[ju] = F[Ju] =T [Ju] - EH[JN] (82)

as usual.
Minimising Ey with respect to the auxiliary orbitals leads to the most general
relativistic Kohn-Sham (KS)-equations

70{ —iy- N +m+ef(z) + i)+ mc(&)}% (&) = ewpn(z) ,  (83)

with the effective potentials

e = [ @) (84)

|z — yl
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This set of equations has to be solved selfconsistently, leading in principle to the
exact j*(z) and hence energies etc.

A glance at the ingredients of the general relativistic KS-scheme reveals a
problem of considerable difficulty. For instance, the evaluation of the vacuum
contributions (in j# and Ty) requires summation over all negative and positive
energy solutions (as well as renormalisation) in each step of the selfconsistency
procedure. All effective potentials involved are endowed with a Minkowski space
structure.

Fortunately, for practical electronic structure calculations two approxima-
tions are possible:

1. The most important simplification arises from the no-sea approximation,
in which all radiative corrections are neglected

jﬁac =0 Ts,vac =0 Exc,vac =0. (86)

If necessary, one may evaluate these contributions perturbatively, that is af-
ter selfconsistency has been achieved without these terms. This approxima-
tion should be useful for all systems of interest, with the exception possibly
of super-heavy atoms.

2. For the case that the external potential is purely electrostatic (a situa-
tion commonly encountered in electronic structure calculations), the charge
density is the only relevant variable, for instance via

Egln] = Egln, jln)] Eueln] = Eveln, jln]] - (87)

As a consequence the Hartree and the xc—potentials only consist of a time-
like component (rather than a four vector structure), so e.g.

vy (z) = (Ua(z),0) (88)
with

Eoln k(!
o (z) = 5(5;’&[)] = 5?5 +Z / dx ’LH /] —{?né) (89)

as there is an explicit functional dependence of j.

The resulting electrostatic, no-sea KS-equations are (all = are dropped)

{ = e Y 4 B+ Vi) + vm(2) + v (&) o (&) = ehpr(z) , (90)

where the density and the three current are given by

nr)= > of@erz) (91)

—m<ep<er

it = > ef(@aes(z) . (92)

—m<ep<er
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One should note that the exact current j[n] has been replaced by the KS current
j(r). The KS current is not necessarily identical with the (unknown) functional
;[n], but expected to be an acceptable approximation. In any case, possible
differences that arise (eg. from inserting j[n] in the transverse Hartree energy)
are absorbed in a redefinition of F,.. -

One may also decompose the interaction mediated by the free photon propa-

gator into a Coulomb (longitudinal) and a transverse part (as discussed before)

2
DI (=) = g7 86" =) + Dl (e —y) - (93)
If one neglects the transverse part, one obtains the longitudinal limit of RDFT,
which corresponds to the use of the Dirac-Coulomb Hamiltonian, a kind of stan-
dard in quantum chemistry. Inclusion of the transverse term recovers the retar-
dation and magnetic effects, which are usually included in a weakly relativistic
limit in the form of the Dirac-Coulomb-Breit (DCB) Hamiltonian.

One of the problems often encountered in the application of DFT is to ensure
that selfinteraction effects contained in the Hartree term are properly cancelled
by the x-energy functional. This problem can be handled if one defines the x-
energy in terms of KS-orbitals. For this purpose one starts with the definition
of the covariant exchange energy

1
E, = §/d3x/d4y DL?,)(x—y) tr{SF(x,y) ¥ Sp(y, ) y*| . (94)

If one evaluates the propagator in the KS-picture,

Sp — SKS = —i{@(xo =) Y enl@) Ba(yeapl—iea(e’ —y")]  (95)

EnD>ER

o - T son@)@(g)exp[—ien(aeo—y0>]} |

€FP€n

and uses the Feynman gauge for the photon propagator, one obtains in the
electrostatic, no-sea approximation the relativistic Fock term

S Y v

—m<eg, 61 <ep

xPr (@) e (z) Py ex(y)

with
wkl:|ek—q| . (97)

The functional dependence of EX* on n arises via the functional dependence of
the KS-orbitals on n. The correlation energy is then

EXS = g, — EES (98)
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The x-potential corresponding to FX* can not be evaluated directly via

£ =" (9)

In order to obtain this quantity, one has to activate the relativistic extension of
the

3.3 Optimised potential method

The optimised potential method (OPM) [26, 27, 28, 29, 30, 21] relies on the fact
that the functional derivative of an energy expression with respect to the density
can be evaluated with the aid of the chain rule

SE _ 3. .1 33 11 O 6@z(£/ (51)}(5(@”)
dn(z) _Zk:/d FO S @) Suks@) on(z) OO (100)

if the dependence on the density is implicit via the orbitals. The quantity
dugs(z')/én(x) is the inverse K S response function. For the functional deriva-
tive of the orbitals with respect to the potential an explicit result can be derived
from the KS equations (which also allows the direct evaluation of the KS re-
sponse function)

Spr(z)
Fomoly) ~ ~ @0l (o)
with
T +
Crle.) = % : (102)
—m<e <m,l#£k

Finally, the functional derivative of the energy with respect to the orbitals is
known if the energy is specified as E = E[p;, ¢;].

The standard procedure can readily be applied to the exchange term (ana-
loguous to the original derivation given by Talman and Shadwick [27]) and leads
to the ROPM integral equation for the x-potential

/fﬁML@w@ﬂ:mg, (103)
with

Kzz)= Y. ¢ @Gz z)ee(a) +c.c. (104)

—m<ex <€

Q)= > /d?’l" i (2)Gr(z, )

—m<ep<eER

SEL[n]
S (2/)
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which corresponds to the electrostatic, no-sea limit. A covariant extension can
readily be derived.

This integral equation has to be solved selfconsistently together with the KS-
orbital equations. In this fashion one establishes the functional relation between
vE5 and n, implicitly. One advantage of the OP-method is (as advertised) the
fact that selfinteraction effects are cancelled correctly. If one adjusts a trivial
constant, so that

vgp(r = 00) =0 (106)
one finds for finite systems the asymptotic behaviour
1
vEOPM (1 5 o0) = - (107)

The OP-procedure can be applied for the full x-energy (longitudinal as well as
transverse). It produces spinor solutions that do not depend on the gauge of the

free photon propagator D,(S,), justifying in retrospect the use of the Feynman
gauge in the definition (By contrast gauge problems arise for the transverse,
nonlocal, orbital-dependent Dirac-Fock exchange).

As the three current j(z) is a trivial functional of the orbitals and the orbitals
are functionals of the density, the procedure establishes (indirectly) a functional
dependence of the form

ZKS,OPM :ZKS[n] ) (108)

The selfconsistent OPM-procedure is much more involved than the direct KS-
scheme. For this reason a search for some shortcuts seems mandatory. This aspect
as well as a valuation of numerical results will follow later.

As a final point of this section on fundamentals, we take a brief look at the
weakly relativistic limit of the theory and the connection with nonrelativistic
current density functional theory [31, 32, 33].

3.4 Weakly relativistic limit

The standard weakly relativistic limit of the QED Hamiltonian can be obtained
with techniques as the low order Foldy-Wouthuysen transformation or by direct
expansion. The results (all constants reinstated in this case) is the Pauli-type
Hamiltonian

2

= [ @ gt @){i [(ihg)? + 200 £ Vig) T+

| @
]

V()] (109)

C

a- (Z X Z(@)) + eVo(@)}sﬁ(@) + Hee .

The notation implies

— () is a nonrelativistic field operator with a two component structure
o are the Pauli matrices
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— f]ee represents the standard Coulomb interaction as the limit of the rela-
tivistic e~ — e” interaction.
For the further discussion it is relevant to note that the gauge term i—z V?is of
order 1/c?, while the other terms are at most of order 1/c.
The weakly relativistic limit of the three current operator can be extracted
with the same techniques leading to

j(2) = j, (@) = = ¥ x m(z) - — V(z)a(z) . (110)

me
It contains the paramagnetic current operator

. ih

1 " A_I_ ~ _ A+ ~

J @) = —5-[¢t @) (Tew) - (Tt @) e@)] . (111)
the magnetisation-density operator

eh

m(z) = —5— ot (2)op(a) | (112)

and the standard density operator

n(z) = ¢F(z)e(z) - (113)
In discussing the gauge structure of the problem at hand, some difficulties seem
to arise. One first notes that the Pauli Hamiltonian is invariant under the gauge
transformation

@l(ﬁ) — e—ieA(g)/ﬁ¢(£)
that is

V)= V(@) - Y A@) ,  (114)

HP(¢/aK/):HP(¢aZ) . (115)
Concerning the currents one can state that the paramagnetic current j,(z) is
not invariant under this gauge transformation, but the combination
- €
} () — — Vi(z) n(z 116
J @)~ = V() a) (116)
and hence the total nonrelativistic current i(@) 1s invariant.
The problem arises if one reexpresses the Hamiltonian in terms of the (phys-
ical) current and density operators

- e?

1p =1+t~ [@2f Vi) o)+ [eVate)

f(@] ﬁ@)} (1)

This form suggests that n and j are the basic variables of the theory, but it is
not possible to prove a HK-theorem with this Hamiltonian, establishing Fy =
Ey[n, j], which seems to contradict the statements of RDFT at first glance. The

2mc?

resolution of this dilemmais the fact that not all terms of order 1/¢? are included
in lffp, i.e. the Hamiltonian is not consistent with respect to an expansion in
1/e. The contribution to Hp which does not allow the proof of a HK-theorem
is the gauge term z—jzz. This means: If one neglects all terms of the order 1/¢?
consistently, the proof of a HK-theorem with n and j as basic variables is possible.
It remains to be investigated whether inclusion of all terms of order 1/c? leads
to a consistent gauge invariant result to that order.
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4 Functionals

Applications of RDFT may, as in nonrelativistic DFT, either use the KS-scheme
or RETF-methods. In the first instance knowledge of

Eyrelj#] resp  vee([5"], 2)

is required. For RETF-applications one needs, in addition, an explicit density
functional representation of the noninteracting kinetic energy

T, = Ts[7"] .

We shall start the discussion by consideration of E,.. The simplest approxima-
tion for this quantity is obtained in the

4.1 Relativistic local density approximation (Eg.)

The procedure used to establish the relativistic LDA (RLDA) is exactly the
same as in the nonrelativistic case [4]. One calculates the energy density of the
relativistic homogeneous electron gas (RHEG) and replaces the constant density
ng by a locally varying density,

EfCLDA[n] = /d?’x echEG(no =n(z)) . (118)

A dependence on the three current does not occur, as the spatial current vanishes
for a homogeneous system
JHHEG — (119)

In the nonrelativistic case rather accurate Monte Carlo results [34] are available
for the correlation contribution (the x-contribution can be obtained analytically).
No Monte Carlo results exist in the relativistic case. This means that one has to
start from scratch with the evaluation of diagrammatic contributions, as far as
this is possible.

The difference compared to the nonrelativistic case is the fact that evaluation
of the various contributions to eZHE&

We shall demonstrate some of the details for the simplest case e
given by (see eq.(94))

1s more involved in the relativistic case.

RHEG which is

1
86 = 0 [ty D =) 1Sy (2 =0 S (y=a)y ]+ CT-V EV, (120

where the fermion propagators are the propagators of the RHEG. Going over to
momentum space, one has

1 d*q d*p 5
ernee = 2 [ e D o[ =) v S0 ] a2
+CT — VEV .
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In diagrammar the loop integral and the VEV look like this,

eHEG = @ @ + CT. (122)

The electron propagators in the first term decompose into a vacuum and density
part. Thus the x-bubble corresponds to

Only the density-density loop gives a finite contribution. In the three remaining
terms we recognise the divergent vacuum polarisation

O

The first term is cancelled by the VEV, the (identical) selfenergy subgraphs have
to be renormalised by appropriate counterterms,

S

The first term 1s thus seen to contam the renormahsed Vacuum—selfenergy inser-
tion,

and the selfenergy insertions

6RHEG

8
l\DIN

(RHEG . d'p (0) (1)

€r1 =t 9. N4 tr |:SD (p) Evac,ren(p)} : (124)
(27)

This term vanishes for the following reason. The propagator Sp(p) contains the

factor (f + m) and the renormalised selfenergy insertion satisfies the on-shell

condition
(F+msl,aw)] =0 (125)

p2=m?
Thus only the finite density-density term remains. All vacuum corrections have
been eliminated by the standard renormalisation scheme. The remaining term

1 d*p d4
(FHEG — (RHEG _ 5/ G o tr{S? S( ) Lo )’Y“}
(126)
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can be evaluated in a straigtforward manner [35, 36, 37|, giving

e = [ - £ koo (127
2
Do (f)=1— 5[% -5 arsmh(ﬁ)] (128)
8= (371' 77,0)1/3 _ k_F’ y = (1‘1‘62)1/2 ] (129)
m m

Using the decomposition of the photon propagator into a longitudinal and a
transverse part, one can split eZ2#E% into corresponding contributions [38],

. h 2
oL(p) = g—l— % + %arsmh(ﬁ) ?2)24 n(n) — %(% — %2(6)) (130)
4 inh 2
o7 (3) = é - # - %arsmh(ﬁ) n #m(n) - (% - %2(5)) . (131)

The variation of the relativistic correction factors is illustrated in Fig.4.1 of
[6]. One finds that the longitudinal part does not differ very much from the
nonrelativistic limit. The transverse correction factor is negative and small for
low densities. It grows, however, sufficiently in magnitude so that the total x-
energy density changes sign at about § = 2.4. As for instance the maximal
density in Hg amounts to § & 3, one realizes that relativistic effects should be
relevant for the inner shells of atoms.

One may look a bit more closely at the transverse part. It can either be
decomposed into a magnetic and a retardation contribution or one may consider
expansion in the weakly relativistic limit, giving the Breit contribution. One
then finds that retardation and magnetic effects have opposite signs, the latter
is dominant though. The Breit limit reproduces the exact transverse correction
factor over the full range of density values of interest quite closely.

The calculation (including the renormalisation) becomes more involved if one
addresses correlation contributions. As a matter of fact the only correlation con-
tribution that has been evaluated is the relativistic random phase approximation

(RPA) [35, 37, 39, 40]. Tt corresponds to the following diagrams,
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where the vacuum subtraction and the fact that counterterms are necessary has
been indicated. Just to illustrate the diagrammatic games, we give an alternative
representation of the diagrams

which indicates that the RPA corresponds essentially to an exchange type term,
in which the free propagator (that is the free interaction) is replaced by a specif-
ically screened interaction. We will not go through the messy details of further
processing the corresponding equations, but rather look at an indication of the
final result in diagrammar,

Here the D in the electron loops indicate that only the electron gas part has to
be inserted there

D D
oR N eNeNe}
D D

The wiggly line with Dy is the full vacuum photon propagator

Duu,V(q)ren = Guv DV (q)ren (Hl Feynman gauge) (132)
with )
Dy’ (q) .
1= D (g) Huac(g)ren

The series of RPA-subdiagrams can be resummed [35, 37, 41] leading to a struc-
ture of the form

DV (q)ren =

(133)

eRPA oc/(;l:_];{ln[l + DH]iDH} (134)

for both the longitudinal and transverse contributions. These integrals have only
been evaluated in some approximations. In the no-sea approximation the full
photon propagator is replaced by the free propagator,

Dvac(q)ren — D(O) (Q) .
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In the no-pair approximation (corresponding to the standard procedure in quan-
tum chemistry) one also uses the free photon propagator and evaluates in addi-
tion the polarisation insertion as

H(O)(q)no—pair — +<>+ 5 (135)

with the electron propagator on the basis of the decomposition (52). Thus in
both cases one neglects the screening effects due to the vacuum. In addition,
there is a (slight) difference in results due to the different evaluation of the
polarisation insertion [42].

Even with these approximations the final result can only be obtained nu-
merically. Writing the longitudinal as well as the transverse contribution of the
no-sea result in the form

efPA (ng) = {efP A (ng) ) @FPA(g) (136)
nonrel
one finds that the correction factors can, as in the case of exchange, can be quite
substantial for higher densities [6].

Further diagrams have not been evaluated for the relativistic homogeneous
electron gas, but a number of high density limits are available. To second order
(e*) two additional correlation diagrams contribute,

D68

Both diagrams require renormalisation beyond the vacuum subtraction indi-

cated. In the high density limit one finds [43] for their total contribution,
o4
>3 1258

k%(—3.1810.12) . (137)

In addition the two loop contribution to the screened exchange [43],

(o))

which is not contained in the no-sea approximation, can also be calculated in
this limit,
oD ng) — — g (1n(28) - E) (138)
v AR S 1ot F 6/
By comparison, for the no-sea RPA-result one has [35, 37]

64

RPA
66 (no) B>>1 12774

kf;(— 7.796) . (139)
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One notes that in the limit considered, the additional second order contributions
amount to about 40% of the RPA value and that in the extreme high density limit
the screened exchange contribution eventually dominates over all other known
contributions. This occurs, however, only for 3 a2 103, which is not relevant for
electronic structure calculations.

4.2 Relativistic generalised gradient approximation (E..)

As the x and RPA correlation contributions in LDA are known not to yield opti-
mal results (for atoms and other systems) in the nonrelativistic case, one has to
consider improvements. The next step (thinking of the history for nonrelativistic
systems) would be direct gradient expansions [44, 45, 46, 47, 48, 49, 50, 51]. The
problem is, that the corresponding contributions as e.g.

of the homogeneous electron gas are difficult to evaluate (and have not been
evaluated) for relativistic systems. In addition, they have not been found to be
very accurate in the nonrelativistic regime. In order to make some headway, we
have carried through the following scheme [52, 53]:

For the x-part

Step 1: Solve the KS-OPM problem for a selection of atoms with closed subshells
(17 atoms were chosen).

Step 2: Use the results to set up a semiempirical relativistic generalised gradient
approximation (GGA), relying on the form

ESG ] = [ e kP4 (w)[00.0(9) + 9(€)022(9)] (140)
For the function g of the dimensionless density gradient
€= (Vn)? / [4n*(3n7n)*/] (141)

we choose nonrelativistic GGA forms. We used the Becke 88 [54], the Engel-
Chevary-Macdonald-Vosko 92 [55] and the Perdew-Wang 91 [56] forms and found
that final results for £, only varied marginally with ¢(&). The function @, g is the
LDA relativistic correction factor indicated earlier. For the relativistic correction
factor @, 2 we choose a reasonably flexible ansatz in the form of a [2/2] Padé-
approximant,

ap + a1 8% + a» B
L+ 5167 + G254

D, 4(8) = (142)
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The form can be used for both the longitudinal and the transverse contributions,
if one sets

ab =1 al =0, (143)

which guarantees that the correct weakly relativistic limit is obtained. The fact
that @, » must be an even function of 2 follows from the time reversal invariance.

Step 3: The coefficients have been fitted to the exact relativistic correction to
the longitudinal exchange energy,

AE£/ = EL [nrel] - Ex,nrel[nnrel] ) (144)

x,rel

and the exact transverse exchange energy E;Tel[nTel], with all quantities being
obtained by corresponding ROPM calculations. Explicit results, indicating their
quality, will be shown in Section 5. For the moment we look at an illustration of

transverse

longitudinal

I I I I
0 0.5 1 15 2 2.5 3

B8 = h(37%n)5 /(mc)

Fig. 1. Relativistic correction factors for the gradient contribution to the exchange
energy density for both ECMV92 (solid line) and B88 (long dashes). Also shown is the
relativistic correction factor for the second order gradient correction for T[n] (short

dashes). )

the correction factors for the B88 and ECMV92 GGAs (Fig.1) and an abbrevi-
ated comparison of the constants in the Padé-ansatz for various GGA functionals
and the longitudinal term:
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Functional | af a bh bL

B8&8 [54] 2.209 0.669 1.331 0.795
ECMV92 [55]] 2.213 0.669 1.330 0.795
PWO1 [56] |2.216 0.670 1.327 0.794

It remains to be stated that we also used other Padé-forms (eg. [3/3]) without
finding significant improvements.

For the case of the correlation term basic data are hard to come by. In this
case a more global form [53],

EEE ) = [ P cO5 o, (). ) 0(9) (145)
has been fitted to second order perturbation theory results (on the basis of
a Dirac-Coulomb-Breit Hamiltonian) for the Neon isoelectronic series [57], as
it seemed to be the most systematic set of quantum chemical data available.
For the nonrelativistic GGA the Perdew-Wang 91 [56] and the Lee-Yang-Parr
[58] forms have been used, @, is again a [2/2] Padé-approximant. The fitting

procedure used
AEC == Ec,rel[nrel] - Ec,nrel[nnrel] (146)

as before, in order to suppress errors in the individual energy values as much as
possible.
The last functional to be discussed is the

4.3 Relativistic gradient expansion for T,[n]

As already indicated, this functional i1s of interest for RETF-applications. We
discuss 1t for two reasons. First, it provides another example for the need of
renormalisation. Second, the results exhibit a certain amount of physics [59, 22].

The starting point of the discussion is the definition of the exact kinetic
energy and the exact current in terms of the exact fermion propagator

T[] = — i /d% lim, tr[( =iy Y +m)Sp(e,y)| - VEV+CT  (147)

y—
j(2) = =i lim tr[Sp(e,y)y”| = VEV +CT . (148)
Yy xr
The symmetric limit indicated is defined as
lim, = = ( lim + lim ) (149)
Y= 2 \y—ayo>e0 y—z,y° <o
(e-y)?>0

It is the relativistic equivalent of the nonrelativistic limit

lim lim
Y=z gt
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The definitions given are quite general. In order to arrive at the noninteracting
situation, one has to replace the exact fermion propagator by the KS propagator,
which can be specified alternatively by the differential equation [60]

(i, = m — fs(2) SE° (x,y) = 6 (@—y) . (150)

The standard perturbation expansion of this propagator in powers of the poten-
tial can be indicated in diagrammar as

KS = + + +

We have seen the explicit form in terms of KS-orbitals before. Renormalisation
1s not necessary.

The symmetric limit required for the calculation of 7 and j, corresponds
to closing the ends of the fermion lines, after supplying them with the required
weight, that is

_iju:© . @W N @m b _VEV+OT
it = e { ) o @w R @ -—

—VEV +CT .

We recognise outermost loops (integration), which introduce, as in standard
QED without external fields, UV-divergencies. It does not make any difference
whether the virtual electron-positron pairs involved in the loops are generated by
the photon field or by an external potential. As a consequence the renormalisa-
tion procedure is the same as the procedure that one uses for the renormalisation
of the propagators of vacuum QED. A quick inspection for j# shows that only
the second diagram on the right-hand side is divergent. For the vacuum four
current all contributions with an odd number of vertex points in the loop vanish
due to Furry’s theorem. From the remaining diagrams,

(s {0+ ,
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only the first one needs to be renormalised.

To see how this works, one has to evaluate T's and j, explicitly. We do this
using a semiclassical gradient expansion as a first step.

In order to obtain the semiclassical gradient expansion (an expansion in terms
of derivatives of the effective KS-potential) one solves the differential equation for
the propagator explicitly by iteration [60]. The general ansatz for the iteration
is the expansion (dropping the index KS)

—ilo—) vl d4 —z r—
Sr(x,y)=e (z=v) (—)/(2 ple=y) Z Puavu z)) . (151)

The index [k] denotes the order of the potential gradients involved. Insertion of
the ansatz into the differential equation yields the recursion

¥ —m) S5 (g, vl >>=[<i¢%u<£>>——z] Vppva(@) . (152)

The starting point for the recursion is the solution of the differential equation
for a constant potential,

Ap+m
SES] (P, vu) = Sg]m(p)—Qm (]bQE ) S(p°—E) O(ep—v° —p°)

. (153)

vo=vo(r)

As an example of the explicit results at this level, we look at the second order
semiclassical gradient expansion of the density n and the kinetic energy density
i for the case of a purely electrostatic external potential v* = (v°,0),

3x2 1272 2

[ (D [ 5
ts[vo]reg = 121—:2F (2 — g) + 8%{])E3 +p°FE — arsinh(%) } (155)
+L2r(2 - g) (Tw0)? — [E—z +p] (V?u0)

247 2 | p

3
L [E —E—i—arsinh(ﬁ)](Zvo)z,
p m

i[volreg = s + L (2 - i) (Y?v0) (154)

T 1272 | 2p3
where
E=cer —vo(z) ; p=+VE?—m?O(F*—m?) . (156)

The results have been obtained with dimensional regularisation. One recognises
contributions which diverge in the limit d — 4. There is a divergent contribution
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to the kinetic energy due to the Dirac-sea, which 1s removed by vacuum energy
subtraction
< vaclflfvac > = " o ¢ (157)
vae vae > = —— — = .
‘ 1672 2

The UV divergencies (proportional to Awvg) are removed by the same counter-
terms which are the lowest order contribution to the vacuum polarisation inser-
tion in standard QED without external fields.

After renormalisation has been carried out, one has finite (in the limit d — 4)
expressions of the form

3 (2) = 5" (vu(z), You(z), . . ) (158)
ts(e) = ts(va(z), Vou(z),..) - (159)

The last step is the derivation of a current (or density in the electrostatic case)
gradient expansion. This is obtained by order by order inversion of the first
relation

va(z) = v (7" (2), V5" (2), . ) (160)

and insertion into the second relation.
We first give the results for the case of an electrostatic external potential to
the fourth order

TfGEO[n] = /d?’x w E[l (ﬁ + 3%n — arsmh(ﬁ)) - %63] (161)

1072m [ |8
TRGE2], /d3 (¥n)® 1 14 2= arsmh(ﬁ) (162)
s ~ T2m non
TRGEA[) = / da (LRGP ] + 1P [n]} (163)

3_64 2
n°

2
A {35—2(226)2 L6 (w2 )y +

36072 n (v }

RGE4 _ 1 (V*B)* 2 g . ?
t,p = 56072 {4 7 [3(1 —45%) + 5(1 + 2;arsmh(ﬁ)) ]

2
4o (L0 [ — 4157 + 20 (1 4 2§arsinh(ﬁ))
B K
" (ﬁz "21'772 + Q%arsinh(ﬁ))]
+ (ﬁ%i); [3 — 1957 — 86" +84° + 165°

2
+20<5242r772 +2%arsinh(ﬁ)) ]} ,

and offer the following comments
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—

The zeroth order contribution to the kinetic energy density is the TF (rela-
tivistic homogeneous electron gas) result, already obtained by Vallarta and
Rosen in 1932 [61].

ii The second and fourth order terms were only obtained in 1987 [22] and 1991
[62]. While the results for the second order term are quite compact, the result
for the fourth order term looks somewhat messy. It contains explicit radiative
corrections (tgflv)ac), which correspond exactly to the Euler-Heisenberg energy
(for the case of an electrostatic potential).

i1 The relativistic results go, for small value of 3, over into the corresponding
nonrelativistic results [63, 64].

1v An illustration of the relativistic correction can readily be given for the zeroth

[&] /t[k] is a function of g3

s,rell s nonrel
alone. As in the case of exchange and correlation the relativistic corrections
are noticable, especially for the case of t[sz] (see Fig.1).

v The same technique can be applied to the generation of a current gradient

expansion for the case of a full four potential [65]. Obviously, there are no

zeroth order current terms (they vanish in a homogeneous system). The

current contribution to t[sz] has the form (8 = (371'277,)1/3/777,)

. 3
1RGP, ) =

3 1
= E/d v arsinh(5(z))
y / &y / a3 W) =0l WO )

4 |z —yllz -z

)

and the second order. In this case the ratio ¢

(164)

=1

As we will not discuss applications of the RETF model [23, 66] in the following,
we offer one brief remark at this point. The model is given by

K
B =S TEI) 4 Begiln] + Egln] + EXPA[n) (165)
=0

and often combined with a spherical average of the system. Evaluation of the
direct variational equations reproduces the gross features of atoms, but does not
reproduce quantal effects like the shell structure. As the model does not involve
correlation contributions comparison with Dirac-Fock-Slater results is adequate.
The results show that the accuracy that can be obtained in the relativistic case
1s comparable to the accuracy in the nonrelativistic case.

5 Applications to atoms

A standard approach to relativistic Coulomb problems is the Dirac-Fock-Slater
(DFS) approximation, in which the kinetic energy is treated fully in terms
of relativity, while the nonrelativistic x-only LDA is used for the exchange-
correlation energy. There are few investigations that use the relativistic LDA
exchange functional and only a scatter addressing relativistic correlation effects
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(see eg.[19, 67, 38, 68, 69, 70, 21, 71, 72]). In view of this state of affairs we set
ourselves as a first goal a more detailed investigation of the quality of the RLDA
functionals that are available.

We begin, however, by looking at ROPM-results in the x-only approxima-
tion [21] in order to assess relativistic effects in a more global fashion. Table 1

Table 1. Longitudinal ground state energies (—EtLot) and highest occupied eigenvalues
(—ek ;) for closed subshell atoms from nonrelativistic OPM (NROPM [73]), relativistic
OPM (ROPM [21]) and relativistic HF (RHF [8]) calculations [74] (all energies are in

hartree).

Atom —FL, —ek,
NROPM ROPM RHF |[NROPM ROPM RHF
He (1s1/2) 2.862 2.862 2.862 0.918 0.918 0.918
Be (2s81/2) 14.572 14.575 14.576 0.309 0.309 0.309

Ne (2p3/2) 128.545 128.690 128.692 0.851 0.848 0.848
Mg (3s1/2) 199.611 199.932 199.935 0.253 0.253 0.253
Ar (3p3/2) 526.812 528.678 528.684 0.591 0.587 0.588
(4s1/2) 676.751 679.704 679.710 0.196 0.196 0.196
n (4s1/2) | 1777.828 1794.598 1794.613 0.293 0.299 0.299
Kr (4p3/2)| 2752.028 2788.848 2788.861 0.523 0.515 0.514
Sr (5s1/2) 3131.514 3178.067 3178.080 0.179 0.181 0.181
d (4d5/2)| 4937.858 5044.384 5044.400 0.335 0.319 0.320
d (5s1/2)| 5465.056 5593.299 5593.319 0.266 0.282 0.281
e (5p3/2)| 7232.018 7446.876 7446.895 0.456 0.439 0.440
a (6s1/2) | 7883.404 8135.625 8135.644 0.158 0.163 0.163
b (6s1/2)| 13391.070 14067.621 14067.669 0.182 0.196 0.197
g (6s1/2) | 18408.313 19648.826 19648.865 0.262 0.329 0.328
n (6p3/2)| 21865.826 23601.969 23602.005 0.427 0.382 0.384

(
(

Ca

Ra (7s1/2) | 23093.258 25028.027 25028.061 0.149 0.167 0.166
No (7s1/2) | 32787.471 36740.625 36740.682 0.171 0.209 0.209

shows ground state energies for neutral, spherical (that is closed subshell) atoms
in the no-sea/longitudinal approximation. We concentrate on the first three
columns, in which nonrelativistic OPM-, relativistic OPM- and relativistic HF-
results can be compared. One notes that for heavier atoms

(a) relativistic effects are obviously important,
(b) ROPM- and RHF-results agree quite closely.

As a specific example for comparision we will use the Hg atom (here and in the
following). For this atom the relativistic contribution to the total ground state
energy (in the approximation specified) amounts to

L,ROPM
AEtLom = FEg E%ﬁOPM —1240.5hartree |
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while the energy difference for the two relativistic theories is

AEtLot,z = EtLO’tRHF — EtLO’tROPM = —39mhartree .

This clearly establishes the need for a relativistic treatment of heavier atoms
and shows that the ROPM gives an adequate representation of exchange effects.
The fact that ROPM results are always slightly higher than RHF-energies can
be understood on the basis of the reduced variational freedom of the ROPM
orbitals.

The trends indicated are also found for the orbital energies of the highest oc-
cupied orbitals (see Table 1). The relativistic 6s1/2-orbital in Hg is more bound
by

_ L,ROPM NROPM __ o
A€gs1/2 = €651/2 — €os1/2 = —67mhartree = —1.8eV |

while there is little difference between the RHF and ROPM orbital energies.
The last statement might imply that the orbital energies are the same for all
ROPM and RHF orbitals. Table 2 (for Hg) demonstrates that this is not the
case. Although the total energies agree quite closely for ROPM and RHF (and
we shall see in a moment that this statement also applies to the individual
contributions to Fy ), one finds eg.

efs’f/gF — efs’f/gPM = —26.80hartree .
This difference is (as expected) much smaller than the relativistic corrections to
the inner orbital energies

L,ROPM NROPM __
€512~ Csi/2 0 = —290.51hartree ,

A€151/2 =

which corresponds to a decrease of about 10.5 %. The percentage change of
the outer orbital is still very large (25.6% for the 65/, orbital). These results
demonstrate that it is dangerous to attach too close a physical interpretation to
the orbitals and their energies.

Table 3 shows the longitudinal x-contribution to the total energy in various
approximations [21, 6]. For this quantity the relativistic correction in Hg amounts
to

AELE = pLROPM _ pNROPM — _ 19 96hartree

z,1 — ’

which is still quite substantial. Comparison with the difference in the total energy
indicates, however, that kinetic and direct potential effects constitute about 98%
of the total relativistic effect. The difference between ROPM- and RHF-results
is again fairly small

AExL,z = ExL’RHF — ExL’ROPM = —T4mhartree .
Also included in Table 3 are DFS results. From the difference

AExL,S = ExL’RHF - EfFS = —10.98hartree
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Table 2. Single particle energies (—e,Lll]) for Hg from NROPM-, ROPM- and
RHF-calculations in comparison with DFS-, and RLDA-results (longitudinal limit, all
energies are in hartree).

Level NROPM ROPM RHF DFS RLDA

1S1/2 | 2756.925 3047.430 3074.228 3047.517 3044.410
2S1/2| 461.647 540.056 550.251 539.713 539.250
2P1/2| 444.015 518.061 526.855 518.164 517.746
2P3/2| 444.015 446.682 455.157 446.671 446.399
351/2| 108.762 128.272 133.113 128.001 127.905
3P1/2| 100.430 118.350 122.639 118.228 118.148
3P3/2| 100.430 102.537 106.545 102.397 102.346
3D3/2 84.914 86.201 89.437  86.085 86.060
3D5/2 84.914 82.807  86.020 82.690 82.668
451/2 23.522 28.427  30.648 28.067 28.046
4P1/2 19.895 24.161 26.124 23.871 23.854
4P3/2 19.895 20.363 22.189 20.039 20.030
4D3/2 13.222 13.411 14.797 13.148 13.146
4D5/2 13.222 12.700 14.053 12.434 12.432
4F5/2 4.250 3.756 4.473 3.556 3.559
4F7/2 4.250 3.602 4.312 3.402 3.404
551/2 3.501 4.403 5.103 4.290 4.286
5P1/2 2.344 3.012 3.538 2.898 2.896
5P3/2 2.344 2.363 2.842 2.219 2.218
5D3/2 0.538 0.505 0.650 0.363 0.363
5D5/2 0.538 0.439 0.575 0.296 0.296
651/2 0.262 0.329 0.328 0.222 0.222

one can infer (in comparison with the difference between the relativistic and the
nonrelativistic results), that insertion of a relativistic density into a nonrelativis-
tic x-functional corrects the deviation from the full relativistic result somewhat.

We now look at RLDA-results, first again for the case of x-only (Table 4).
In the longitudinal limit, the error of the RLDA for the total energy is only of
the order of 0.1% for the heavier systems (17.20hartree for Hg). If one compares
this with the error in the x-contribution, one finds that this error is solely due
to exchange

Apl = pLROPM _ pLRLDA — _17 59hartree

bl

which amounts to about 5%. Compared to nonrelativistic systems, this shows
that the relative error of the longitudinal exchange energy is comparable (Be
14.5%, Kr 6.1%), so that the LDA-exchange contribution can as well not be
considered to be sufficiently accurate in the relativistic case.

In Table 5 we look at results obtained for the full relativistic x-functional. We
first note that inclusion of the transverse contribution leads to a higher ground
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Table 3. Longitudinal (Coulomb) x-only energies (—FZX) for closed subshell atoms
from NROPM-, ROPM-, RHF-, DFS-, and RLDA-calculations [21, 74] (all energies

are in hartree).

Atom|NROPM ROPM  RHF DFS RLDA

He 1.026 1.026 1.026 0.853 0.853
Be 2.666 2.667 2.668 2.278 2.278
Ne 12.105  12.120 12.123  10.952  10.944
Mg 15.988 16.017 16.023 14.564 14.550
Ar 30.175  30.293  30.303 27.897  27.844
Ca 35.199 35.371 35.383  32.702  32.627
Zn 69.619 70.245 70.269 66.107  65.834
Kr 93.833 95.048 95.072 89.784  89.293

Sr 101.926 103.404 103.429 97.836  97.251
Pd 139.113 141.898 141.930 134.971 133.887
Cd 148.879 152.143 152.181 144.931 143.687
Xe 179.062 184.083 184.120 175.926 174.102
Ba 189.065 194.804 194.841 186.417 184.363
Yb 276.143 288.186 288.265 278.642 274.386
Hg 345.240 365.203 365.277 354.299 347.612
Rn 387.445 414.082 414.151 402.713 394.102
Ra 401.356  430.597 430.664 419.218 409.871
No 511.906 564.309 564.415 554.242 538.040

state energy
AEBy, = ELROPM _ pLAT.ROPM — 99 19hartree .

This is in accord with the fact, that the transverse term has an opposite sign
with respect to the longitudinal term. The absolute error of the total RLDA-
energy has, however, changed to 29.16hartree, an increase by 11.96hartree with
respect to the longitudinal limit. The error in the transverse exchange energy is

(see Table 6)
ApL = pLROPM _ pT.RLDA — 19917 — 34.20 = —12.03hartree |

which corresponds to a relative error slightly larger than 50%. Obviously, there
1s substantial room for improvement.

We next look at the correlation contribution in the LDA. As the correla-
tion contribution in heavier atoms in LDA amounts to about 10hartree, with a
relativistic correction of the order of 0.5hartree, there is hardly any difference
if one performs a variational z-only calculation and evaluates the correlation-
contribution with the resulting density or if one performs a more complete vari-
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Table 4. Longitudinal x-only ground state energies: Selfconsistent ROPM, RHF,
RLDA and RGGA results for neutral atoms with closed subshells (in hartree [74]).

Atom| —EL, EL, — ELforM
ROPM | RHF RLDA RPWO9l
He 2.862| 0.000 0.138 0.006
Be 14.575|—0.001 0.350 0.018
Ne 128.690|—0.002 1.062 —0.024
Mg 199.932(—0.003 1.376 —0.001
Ar 528.678|—0.005 2.341  0.041

Ca 679.704(—-0.006 2.656  0.026
Zn 1794.598|—-0.014 4.140 —0.262
Kr 2788.848|—-0.013 5.565 —0.021
Sr 3178.067|—0.013 5.996 —0.008
Pd 5044.384|—-0.016 7.707 —0.067
Cd 5593.299|—-0.020 8.213 —0.033
Xe 7446.876|—0.019 9.800  0.085
Ba 8135.625|—0.019 10.289  0.059
Yb |14067.621|—0.048 13.272 —0.893
Hg |19648.826|—0.039 17.204 —0.250
Rn |23601.969|—0.035 19.677  0.004
Ra |25028.027|—0.034 20.460 —0.006

ational calculation. As the RPA limit 1s known not to be an accurate approxi-
mation to the correlation energy, we suggest to use [21]

EfLDA[n] — ERPA [n] _ ERPA [n] 4 ELDA [n] . (166)

c,rel c,nonrel c,nonrel

We use only the relativistic correction to the RPA, which 1s added to a complete
nonrelativistic functional (eg. LDA from Monte Carlo [76]). For high densities
the RPA contribution in the two nonrelativistic terms cancel, so that the cor-
relation energy is given by the relativistic RPA plus the nonrelativistic second
order exchange graph. For low densities the first two terms cancel, so that the
correlation energy is given by the more adequate nonrelativistic result.

One problem that one encounters for heavier elements, is the fact that ex-
perimental total energies (and hence experimental correlation energies) are not
available. (Tt is difficult to measure successive ionisation energies of all positive
ions for heavier systems.) Thus we compare LDA-results with results obtained in
second order many-body perturbation theory (MBPT) [57]. Table 7 illustrates
the well-known fact that nonrelativistic LDA correlation energies overestimate
the correct values by a factor of about two. As better density functionals are
available for this quantity, one can concentrate on the relativistic corrections
(here with respect to the LDA). One finds the following situation: While the
longitudinal part agrees with the results of MBPT (at least within a factor of
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Table 5. Total relativistic x-only ground state energies: Selfconsistent ROPM, RLDA
and (R)GGA results for neutral atoms with closed subshells in comparison with per-
turbative RHF data (in hartree [74]).

Atom| —EEFT ELT _ plATROEM
ROPM [RHF(p) RLDA RPW91 PWO1
He 2.862] 0.000 0.138 0.006 0.006
Be 14.575| —0.001 0.351 0.018  0.017
Ne 128.674| —0.002 1.080 —0.024 —0.043
Mg 199.900| —0.003 1.408 —0.001 —0.037
Ar 528.546| —0.005 2.458  0.041 —0.111

Ca 679.513| —0.006 2.818 0.026 —0.195
Zn 1793.840| —0.014 4.702 —-0.263 —1.146
Kr 2787.429| —0.012 6.543 —0.022 —1.683
Sr 3176.358| —0.012 7.149 —0.010 —2.014
Pd 5041.098| —0.013 9.765 —0.069 —3.953
Cd 5589.495| —0.016 10.556 —0.035 —4.538
Xe 7441.172| —0.012 13.161 0.083 —6.706
Ba 8129.160| —0.010 14.050 0.057 —7.653
Yb |14053.748| —0.023 20.886 —0.896 —17.662
Hg [19626.702| 0.005 29.159 —0.260 —27.256
Rn |23573.351| 0.026 35.203 —0.012 —35.149
Ra {24996.942| 0.034 37.391 —0.026 —38.271

two, but mostly better), the differences for the transverse part are much larger
(up to factors of 4). The comparison should not be taken as final, as the quality
of the results of MBPT is difficult to assess, but in view of the large differences,
it is obvious that also the relativistic correlation-corrections need to be improved
upon.

The semiempirical relativistic GGA exchange functional gives very rea-
sonable results. We first consider the total energies in the x-only limit for the
case of the modified PW91 functional (similar results are obtained for the other
GGA x-functionals that we have investigated). For both the longitudinal as well
as the full exchange the deviation from the OPM-standard is less than 0.2% (for
He), for the heavier systems less than 0.01% (see Tables 4,5). If one then looks at
the x-contributions (Fig.2), one finds that these quantities are also reproduced
very closely (with an absolute error of less than 100mhartree). The relativistic
corrections themselves for both the longitudinal part as well as the transverse
part agree very closely (which should not astonish as these quantities have been
fitted).

The relativistic GGA correlation functional is not of the same quality
(see Fig.3), still there is an order of magnitude improvement for the relativistic
correlation contribution over the LDA (referred to MBPT as a standard). The
fact that the situation for the correlation contribution is far from settled is



Relativistic Density Functional Theory 37

Table 6. Transverse x-only energies (EZ) for closed subshell atoms: ROPM results in
comparison with the values obtained by insertion of ROPM densities into the relativistic
LDA (RLDA) and two relativistic GGAs (RECMV92 and RB88) (all energies are in
hartree, [74]).

Atom| ROPM RLDA RECMV92 RBS88

He |0.000064 0.000159 0.000060 0.000061
Be 0.00070 0.00176 0.00071 0.00072
Ne 0.0167  0.0355 0.0166 0.0167
Mg 0.0319 0.0654 0.0319 0.0319
Ar 0.132 0.251 0.132 0.132
Ca 0.191 0.356 0.191 0.191
Zn 0.759 1.328 0.760 0.759
Kr 1.420 2.410 1.421 1.419
Sr 1.711 2.878 1.712 1.710
Pd 3.291 5.374 3.291 3.291
Cd 3.809 6.180 3.809 3.809
Xe 5.712 9.114 5.712 5.713
Ba 6.475 10.282 6.475 6.477
Yb 13.900 21.597 13.895 13.900
Hg 22.169  34.257 22.169 22.169
Rn 28.679  44.382 28.681 28.680
Ra 31.151  48.275 31.149 31.151

100

0 ~— g — e —— - —

—— RLDA (x0.1)
--- RBSY
- = RPW91

| | | |

0 20 40 60 80 100

Z

Fig. 2. Relativistic contribution AFE, to the x-only energy: Percentage deviation of
selfconsistent RLDA and RGGA results from ROPM-data for neutral atoms.
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Table 7. Comparison of LDA [21], CI (estimated from nonrelativistic Cl-calculations
for the three innermost electrons and the experimental ionisation potentials of all other
electrons [75]) and MBPT?2 [57] correlation energies for neutral atoms: EX T — nonrel-
ativistic correlation energy, AEL — relativistic contribution in the longitudinal corre-
lation energy, FI — transverse correlation energy (in the case of the MBPT?2 only the
dominating Breit contribution to E! is given — all energies are in mhartrees).

Atom —ENE —ARL —ET
MBPT2 CI LDA MBPT2 LDA MBPT2 LDA
He 37.14 42.04 111.47 0.00 0.00 0.04 0.00
Be 94.34 224.44 0.02 0.02
Ne 383.19 390.47 743.38 0.20 0.38 1.87 0.32
Mg 438.28 891.42 0.75 0.57
Ar 697.28 722.16 1429.64 0.84 2.60 7.92  1.89
7Zn | 1650.61 2665.20 10.51 10.97  26.43 7.92
Kr |1835.43 3282.95 11.39 19.61 41.07 13.10
Cd  |2618.11 4570.56  35.86 44.79  82.32 28.58
Xe [2921.13 5200.19  37.57 64.73 108.75 39.27
Heg |5086.24 8355.68 203.23 200.87 282.74 113.08
Rn |5392.07 9026.90 195.36 257.00 352.60 138.43

| | | |

20 —

0 L —

% -20 - —

40 - —

-60 -

0 20 40 60 80 100

Fig. 3. Relativistic correction AF. to the correlation energy: Percentage deviation of
selfconsistent RLDA- and RGGA-results from MBPT2-data for Ne isoelectronic series.
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illustrated for the case of neutral Xe. For this case the following results are
available:

AE. = 14bmhartree  RGGA [53]
= 80mhariree RLDA [21]
= 146mhariree DCB — M BPT?2 [57]
= 105mhariree DCB — Coupled — Cluster [77)] .

6 Final Remarks

Here we offer some remarks on additional points and future problems: The point
that we did not discuss (although we have a large number of case studies) is the
question in how far the local quantities (rather than the integrated quantities) are
reasonable. This can most easily be discussed by comparison of the corresponding
potentials, which show shell structure and finer effects more closely [21, 6, 52, 53].

Obviously, there is much to be done: First the calculations for atoms have
to be extended to the case of nonspherical systems (with the possibility of ”spin
polarisation”, which in the relativistic case manifests itself in the appearance
of current contributions). Of greater interest is, however, the investigation of
relativistic effects in more complex systems, as for instance

i) Diatomic systems

— changes in bond lengths, dissociation energies etc.

ii) Solids
— changes in band structure features (eg. Fermi surfaces) and cohesive prop-
erties

iii) Pseudopotentials
— as for heavy atoms even the outermost orbitals are affected by relativistic
corrections, there is a modification of the pseudopotential [70]

Finally, some topics that have been addressed in the literature but have not
been presented here (due to the usual lack of time), should at least be recorded.

e The discussion of RDFT has been extended to the case of strong, short range
interactions on the basis of the field theoretical meson exchange model of
nuclear physics, that is quantum hadrodynamics (QHD). Both ETF- [78, 79]
as well as KS-applications [80, 81] have been given. In the latter instance it
is of interest to note, that, due to the nature of the dominant interaction,
results obtained with the x-only LDA agree quite closely with HF-results,
which are available for a number of nuclei. The multiplicative character of
the KS-exchange, however, allows also the consideration of superheavy nuclei
[82], which, at the moment, are still not accessible via the HF-approach.

e Thermal RDFT has been discussed both on the basis of QED [83] as well as
QHD [84]. Applications are restricted to thermal ETF-models [85].
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