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1 IntroductionA few numbers will illustrate that it is necessary to develop a relativistic versionof density functional theory (DFT) [1, 2, 3, 4, 5, 6]. The relative relativisticcorrection Arel �AnrelAnrelis about 30% for the ionisation potential of the Gold atom, �13% for the bondlength of the AuH molecule and about 50% for the dissociation energy of thissystem [7]. The error can even be larger for sensitive quantities like the electrona�nity. For this quantity one �ndsAnrel = 0:10eV Arel = 0:67eVon the level of the Hartree Fock (HF) approximation [8], andAnrel = 1:02eV Arel = 2:28eVon the level of the con�guration interaction approach [7, 9]. Obviously, relativisticand correlation e�ects modify results on a comparable level.While it is still possible to deal with relativistic e�ects in smaller systemsin terms of traditional methods, the treatment of larger systems with heavierconstituents will require a relativistic extension of DFT (RDFT). One of thequestions that has to be answered in this context is: How much of the relativisticcorrection is due to kinetic e�ects (replace the nonrelativistic kinetic energy byits relativistic counterpart) and how much is due to exchange-correlation e�ects?The answer to this and other questions is the goal of our endeavours.The proper frame for the discussion of RDFT is a suitable �eld theoreticalformulation [10, 11, 12] of the problem at hand. For the case of Coulomb systemssuch a theory is quantum electrodynamics (QED). One might ask: Why not basethe discussion on the many-body Dirac equation, as eg. in standard Dirac-Fockcalculations?Here is a more extensive answer. As one knows, Dirac theory leads to apositive de�nite one particle densityn(x) =  (x)
0 (x) =  +(x) (x) :



2 Reiner M. Dreizler and Eberhard EngelOn the other hand, the energy spectrum contains a negative energy continuum.In order to prevent disaster, one has to invoke the concept of a �lled Dirac sea.Holes in this sea can be associated with antiparticles.One possibility to handle this situation in an economic fashion is the transi-tion to a �eld theoretical formulation, which is, for present purposes, indicatedfor the case of the free particle problem. The free Dirac equation (with �h = c = 1,as usual) is (�i@= +m) (x) = 0 ; @= = 
�@� = 
� @@x� : (1)A general solution of this equation (a spinor wave packet) is (x) = Z d3k 2Xl=1 hbl(k)u(l)(k)e�ik�x + cl(k)v(l)(k)eik�xi ; k0 =qk2 +m2 :The notation is{ positive, negative energy spinors u(l); v(l){ energy-momentum four vector k = (k0; k){ Minkowski space scalar product k � x = k0t� k � x .In the process of �eld quantisation the spinor wave functions are replaced by�eld operators,  (x);  +(x) �!  ̂(x);  ̂+(x) ;by demanding that canonical, equal time anticommutation relations hold,f ̂�(x; t);  ̂+� (y; t)g = ����(3)(x� y) (�; � = 1; : : :4) : (2)This requires that the Fourier coe�cients bl; cl be replaced by operators,bl(k)! b̂l(k) b�l (k)! b̂+l (k)cl(k)! ĉl(k) c�l (k)! ĉ+l (k) :In order to incorporate the concept of the Dirac sea directly, one reinterpretsthe operators associated with the negative energy solutions asĉl(k)! d̂+l (k) ĉ+l (k)! d̂l(k) ;the interpretation being: The destruction of a particle with negative energy cor-responds to the creation of an antiparticle with positive energy (and vice versa).This language refers to a vacuum state that is free of particles rather than the�lled sea, b̂l(k)jvac >= 0 ; d̂l(k)jvac >= 0 :The corresponding relativistic �eld operator ̂(x) = Z d3k 2Xl=1 hb̂l(k)u(l)(k)e�ik�x + d̂+l (k)v(l)(k)eik�xi (3)



Relativistic Density Functional Theory 3then describes the destruction of a particle or the creation of an antiparticle. ̂+(x) describes the creation of a particle and the destruction of an antiparticle.Other operators can then be constructed like(i) the charge operatorQ̂ = �e Z d3k 2Xl=1 hb̂+l (k)b̂l(k)� d̂+l (k)d̂l(k)i (4)= �e(N̂part � N̂antipart) ; (5)where in�nite but trivial vacuum expectation values have been subtracted.One then notes that  ̂(x) raises the charge by one unit, while  ̂+(x) decreasesthe charge correspondingly.(ii) the free HamiltonianĤ = Z d3x  ̂(x)(�i
 � 5+m) ̂(x) (6)= Z d3k 2Xl=1 [b̂+l (k)b̂l(k) � d̂l(k)d̂+l (k)] k0= Z d3k 2Xl=1 [b̂+l (k)b̂l(k) + d̂+l (k)d̂l(k)] k0 +1 ; (7)so that one can rede�ne the trivially renormalised HamiltonianĤR � Ĥ� < vacjĤjvac > = Z d3k k0fN̂part(k) + N̂antipart(k)g : (8)Contrasting once more energy and charge in Dirac and �eld theory we note fora free particle (charge �e)/antiparticle:charge energyDirac theory negative de�nite positive/negative�eld theory negative/positive positive de�niteObviously, the second line corresponds to the experimental solution.In addition, the �eld theoretical formulation of the interacting problem (thecoupling to the electromagnetic �eld can be introduced by invoking local U (1)gauge invariance) involves for instance the features:(i) The interaction between the fermions is described by the photon propaga-tor rather than the Coulomb interaction. In lowest order this propagatordescribes the exchange of a free photon,D(0)�� (x; y) �! ���������������� :



4 Reiner M. Dreizler and Eberhard EngelIt contains retardation and magnetic e�ects. One may even consider moreexact forms likeD��(x; y) = ���������������� + ���������������������������� + � � � ;involving lowest order vacuum polarisation e�ects.(ii) The full machinery of many-body physics [13, 14] can be activated directly,with fermion propagators, Dyson equations etc.If one accepts these statements as an answer to the question posed, then onecan start to look at a selection of the background material that is necessary forthe discussion of RDFT. This is done in section 2, which is entitled2 Assorted Remarks on Vacuum QED, the RelativisticHomogeneous Electron Gas and QED with ExternalPotentialsA system of Dirac particles (charge �e) and antiparticles, which interact by theexchange of photons is characterised by the QED Lagrangian densityLQED(x) = Le(x) + L
(x) + Lint(x) : (9)The three terms represent the free Dirac Lagrangian of the fermionsLe(x) = i2 [ ̂(x)
�@� ̂(x)� (@� ̂(x))
� (x)] �m ̂(x) ̂(x) ; (10)the free photon LagrangianL
(x) = � 116� F̂��(x)F̂��(x)� �8��@�Â�(x)�2 (11)and the interaction term Lint(x) = �eĵ�(x)Â�(x) : (12)The following explanatory remarks are necessary.(i)  ̂(x) and Â�(x) are the fermion and photon �eld operators, the actual elec-tromagnetic �eld is characterised by the �eld tensorF̂��(x) = @�Â�(x)� @�Â�(x) : (13)ĵ�(x) is the fermion four current. It is most conveniently speci�ed in thecommutator form ĵ�(x) = 12[ ̂(x); 
� ̂(x)] ; (14)which explicitly expresses charge conjugation invariance.



Relativistic Density Functional Theory 5(ii) The quantisation of the free photon problem is more complicated due to thetransversality of the photon �eld. The form of the Lagrangian speci�ed refersto a covariant gauge (and thus involves the so-called gauge �xing term).Standard gauges are the Feynman gauge (� = 1) and the Landau gauge(� =1). The photon sector of the Fock space is supposed to be speci�ed interms of the Gupta-Bleuler inde�nite metric quantisation. We will, however,not display any details concerning this point.Essentially, all results available for (vacuum) QED systems are based on pertur-bation theory. The basic quantities used in this context are the fermion and thephoton propagators (where T denotes time-ordering)SF;vac(x; y)�� = �i < vacjT  ̂�(x) ̂�(y)jvac > (15)= Z d4p(2�)4 SF;vac(p)�� e�ip�(x�y) (16)D��;vac(x; y) = �ie2 < vacjT Â�(x)Â�(y)jvac > (17)= Z d4q(2�)4D��;vac(q) e�iq�(x�y) : (18)The fact that both quantities depend only on the di�erence of the Minkowskicoordinates is an expression of the translational invariance of the theory.In lowest order, these propagators can be calculated directly. For the fermionpropagator (describing the time development of a free fermion forward and of afree anti-fermion backward in time) one �ndsS(0)F;vac(p)�� = � p=+mp2 �m2 + i���� : (19)In diagrammar this quantity will be denoted byS(0)F;vac(p)�� = � - �p : (20)The photon propagator depends on the choice of gauge. In Landau gauge one�nds D(0)�� (q) = � 4�e2q2 + i��g�� � q�q�q2 � ; (21)the second term in the bracket is not present in Feynman gauge. In diagrammarwe represent this quantity byiD(0)�� (q) = � ����������������q � : (22)We shall later use the decomposition of this propagator into a nonretardedCoulomb (longitudinal) and a transverse contribution,D(0)�� (q) = D(0)L�� (q) +D(0)T�� (q) ; (23)



6 Reiner M. Dreizler and Eberhard Engelwith the longitudinal part D(0)L�� (q) = g0�g0� 4�e2q2 : (24)The link between the propagators is provided by the vertex, which describesthe emission and the absorption of a photon by a fermion. In momentum space,the lowest order vertex just corresponds to a 
-matrix provided one implies fourmomentum conservation� (0)� (p1; p2)�� = 
� �! r�p1 ��� @@R� p2������� p1 � p2 : (25)In the next order of perturbation theory (characterised by an additional freephoton line), the contributions areS(1)F;vac(p) = p p� qq-��r������������r p (26)iD(1)��;vac(q) = q p� qp����������r �����- r����������q : (27)From these diagrams one extracts the lowest order contributions to the basictwo point functions of the theory: the electron selfenergy,�(1)vac(p) = p� q 6��r������������r q = i Z d4q(2�)4 D(0)�� (q)
�S(0)F;vac(p � q)
� ; (28)and the vacuum polarisation,�i�(0)��;vac(q) = p 6����rr ?p+ q�� = � Z d4p(2�)4 trh
�S(0)F;vac(p)
�S(0)F;vac(p� q)i: (29)In addition, one �nds for the next order contribution to the vertex function (athree point function)� (1)�;vac(p1; p2) = � r����*HHHHY r����������������rp1 � kp2 � k k= i Z d4k(2�)4 D(0)�� (k)
�S(0)F;vac(p1 � k)
�S(0)F;vac(p2 � k)
� : (30)



Relativistic Density Functional Theory 7If one evaluates the integrals over the loop momenta, one �nds that neither ofthe three quantities �(1);�(0) and � (1) is well de�ned. One encounters UV-divergencies (divergencies due to large values of the loop momenta). One wayto deal with these divergencies and to endow the three quantities with a mean-ing is the counterterm technique based on dimensional regularisation [15]. Inthis method one �rst evaluates the integrals indicated in (1; d� 1)-dimensionalMinkowski space (rather than in the (1,3)-dimensional space). These results canthen be analytically continued to noninteger d, so that the physically interestinglimit d! 4 can be taken. The results (involving an expansion about this limit)are �(1)vac(p) = e216�2� (s)(�p=+ 4m) + �(1)vac;finite(p) (31)�(0)��;vac(q) = (q2g�� � q�q�)�� (s)12�2 + !(0)vac;finite(q2)� (32)� (1)�;vac(p1; p2) = e216�2� (s)
� + � (1)�;vac;finite(p1; p2) : (33)The divergent part of the loop integrals is isolated in each case in the � -function� (s) � ��12(4� d)� �!s!0 1s + : : : : (34)For the �nite remainders, the limit d ! 4 can be taken directly. The ratherlengthy expressions that result are not of interest for the moment.Two additional features might be of interest though: The tensorial structureof the vacuum polarisation is a consequence of the general gauge invariance,q� ���(q) = 0 : (35)Another manifestation of gauge invariance is the Ward-Takahashi identity,(p� � p0�)� �vac(p; p0) = �vac(p0)��vac(p) ; ; (36)which is satis�ed by the divergent (as well as the �nite) contributions to � and� . The next step, the actual renormalisation, amounts to a rede�nition of thephysical constants and operators in the initial Lagrangian, leaving the physicalimplications of this Lagrangian unmodi�ed. The renormalisation procedure canreadily be demonstrated (on the one loop level) for the case of mass renormali-sation. Using the Dyson equationSF;vac(p)�1 = S(0)F;vac(p)�1 � �vac(p) = p=�m ��vac(p) (37)one �nds to �rst orderS(1)F;vac(p)�1 = p=�1 + e216�2� (s)��m�1 + e24�2� (s)�� �(1)vac;finite(p) : (38)



8 Reiner M. Dreizler and Eberhard EngelIn order to compensate the terms that diverge in the limit d ! 4, one adds tothe "unrenormalised Lagrangian" a "counterterm Lagrangian" of the same form.The unrenormalised Lagrangian has the form (9) originally given with phys-ical constants (m; e) and physical �eld operators. The counterterm Lagrangianfor (fermion) mass renormalisation isLe;CT =  ̂(x)(iA@= �B) ̂(x) : (39)The renormalised fermion Lagrangian is thusLe;R = Le;unren+ Le;CT=  ̂(x)�i(1 + A)@=� (m +B)� ̂(x) : (40)Evaluating the electron propagator on the one loop level as before (with thesame Lint) one �ndsSF;vac;R(p)�1 = p=�1 +A + e216�2� (s)� (41)�m�1 + Bm + e24�2� (s)�� �(1)vac;finite(p) :The obvious choiceA = � e216�2� (s) ; B = �e2m4�2 � (s) (42)leads to a �nite result, in diagrammar,����SF;R = - + � - r��-����������r- + � � + : : : .The additional diagram represents the counterterm contribution� = S(0)F;vac(p)[�Ap=+B]S(0)F;vac(p) : (43)The form invariance of the Lagrangian under this renormalisation procedure isthen implemented by de�ning the wavefunction (actually �eld operator) renor-malisation  ̂bare(x) = [1 + A]1=2  ̂(x) (44)and the bare mass mbare = m � �m (45)(to the given order), so thatLe;R =  ̂bare(x)(i@= �mbare) ̂bare(x) ; (46)that is the counterterms necessary to keep �(1) �nite have been completelyabsorbed in a rede�nition of the ingredients of the (free) fermion Lagrangian.



Relativistic Density Functional Theory 9An equivalent procedure can be carried out for �(0)��;vac addressing L
 , aswell as for � (1)�;vac addressing Lint. The argumentation can be extended to anyorder, after a discussion of overlapping divergencies, that occur for instance inthe diagram &%'$r r��������������������r r .We shall return to some aspects of the renormalisation problem when we talkabout the derivation of explicit relativistic functionals.We then leave vacuumQED and discuss brie
y the simplest relativistic manyfermion problem: The Relativistic Homogeneous Electron Gas (RHEG).This system is characterised by a ground state that contains N electrons pervolume V , n0 = NV : (47)The relativistic version is essentially the same model as the nonrelativistic equiv-alent with the di�erence that the kinetic energy is replaced by the relativisticform and the Coulomb interaction is replaced by the exchange of photons.The fermion propagator readsSF (x; y) = �i < �0jT ( ̂(x) ̂(y))j�0 > ; (48)with j�0 > denoting the ground state of the RHEG. This di�ers from the vacuumpropagator SF;vac already in lowest order as SF;vac describes free electrons andpositrons while SF of the RHEG describes electrons and positrons embedded ina medium.The result of an explicit, straightforward evaluation can be expressed in theform S(0)F (p) = S(0)F;vac(p) + S(0)F;D(p) (49)with S(0)F;D(p) = 2�i �(p0 �Ep) p=+m2Ep �(kF � jpj) (50)Ep = [p2 +m2]1=2 ; kF = [3�2n0]1=3 : (51)The quantity in Eq.(50) is the contribution to the propagator due to �nite densityof real electrons. An alternative decomposition of the propagator in lowest ordercan be given, S(0)F (p) = S(0)F;�(p) + S(0)F;+(p) : (52)This decomposition contains a contribution due to the electrons,S(0)F;+(p) = (p=+ +m)2Ep � �(jpj � kF )p0 �Ep + i� + �(kF � jpj)p0 � Ep � i�� ; (53)



10 Reiner M. Dreizler and Eberhard Engelwith p�� = (�Ep; p) ; (54)(which has some resemblance to the corresponding nonrelativistic propagator)and a positron contribution,S(0)F;�(p) = (p=� +m)2Ep � �1p0 +Ep � i�� : (55)The lowest order fermion propagator of the RHEG will in the following be de-noted by a double line S(0)F (p) = -- : (56)The other two basic elements of perturbation theory, the free photon propagatorand the simple vertex, remain unchanged. On the other hand, the full photonpropagator, which in this case is given byD��(x; y) = �ie2 < �0jT (Â�(x)Â�(y))j�0 > ; (57)and the full vertex di�er from the vacuum QED result. The reason is that notonly e+�e� pairs screen the bare interaction but also virtual electron-hole pairs.The discussion of the ground state energy of the RHEG is the basis of the localdensity approximation (LDA), as in the nonrelativistic case. We shall discussthe necessary details in connection with the explicit consideration of this limitin section 4. We shall see there that the renormalisation procedure, which is alsonecessary for this system, concerns essentially only the vacuum aspects involved.In the discussion of inhomogeneous systems (like atoms, molecules etc.) thefermions have to be subjected to an additional external �eld, which representsthe �xed nuclei and/or any other external perturbation present. In this casethe original QED Lagrangian has to be supplemented by an external interactionterm, L(x) = LQED(x) + Lext(x) (58)Lext(x) = �eĵ� (x)V�(x) : (59)For the discussion of stationary systems the external four vector is static,V�(x) � V�(x) : (60)It will be denoted in diagrammar asV �! ����������������� : (61)One can then show (with the aid of Noether's theorem if necessary) that thecorresponding energy is conserved, so that the Hamiltonian is given byĤ = Z d3x T̂ 00(x) (62)= Z d3x  ̂(x) (�i
 � r+m) ̂(x) (63)



Relativistic Density Functional Theory 11� 18� Z d3x�@0Â�(x)@0Â�(x) +rÂ�(x) � rÂ�(x)�+e Z d3x ĵ�(x)Â�(x) + e Z d3x ĵ�(x)V�(x) :The renormalised Hamiltonian has the formĤR = Ĥ � V EV +CT ; (64)involving the subtraction of the vacuum expectation value and the addition ofcounterterms analoguous to the counterterms of the Langrangian.3 FoundationsThe �rst topic is the extension of the Hohenberg-Kohn (HK) theorem [16] to thecase of relativistic QED systems.3.1 The relativistic Hohenberg-Kohn theoremThis extension was �rst formulated by Rajagopal and Callaway [17, 18] (and byMacDonald and Vosko [19]). As expected for a relativistically covariant situation,the theorem states that the ground state energy is a unique functional of theground state four current,E0[j�] = F [j�] + Z d3x j�(x)V�(x) ; (65)with F being a universal functional of j�. There are, nonetheless, a number ofpoints that should be discussed more closely.The arguments used in the original proof are based on QED, but the questionof possible divergencies was ignored. As the proof relies (as in the nonrelativisticcase) on the celebrated "reductio ad absurdum", one has to make sure that wellde�ned, �nite quantities for the ground state energy and the four current areinvolved [20],E0 = < �0jĤj�0 > � < vac jĤe + Ĥ
 + Ĥintj vac > +�E0;CT (66)j�(x) = < �0jĵ�(x)j�0 > +�j�(x) ; (67)that is quantities including all vacuum subtractions and counterterms (�). Inaddition, one has to make sure that the structure of the counterterms does notinvalidate the proof. With these precautions, one can establish the usual chainof unique mapsnV����V� + @��o() nj�0 > ��� with j�0 > from V� + @��o() j� (x) : (68)There exists a one-to-one correspondence between the class of external potentialsdi�ering by a static gauge transformation and the corresponding class of ground



12 Reiner M. Dreizler and Eberhard Engelstates. This class of physically equivalent ground states is uniquely determinedby the ground state four current. As a consequence one can express all groundstate observables (including the energy) as a unique functional of the groundstate four currentO[j�] =< �0[j�] j Ô j �0[j�] > +�O � V EV : (69)As a side remark one may note, that both the ground state energy and the fourcurrent are gauge invariant quantities.For the case of a purely electrostatic, external potential,V �(x) = nV 0(x); 0o ; (70)the proof can be repeated using just the zeroth component of the four current(i.e. the charge density) j0(x) � n(x) [21]. The ground state energy and allvariables are then functionals of the density alone. It should be emphasised thatthis does not imply that the spatial components of the current vanish in thiscase. It only implies that the three current has to be interpreted as a functionalof n(x), j(x) =< �0[n] j ĵ(x) j �0[n] > = j([n]; x) : (71)With the Ritz principle, already involved in the details of the proof of the HKtheorem, one may formulate the basic variational principle of RDFT as��j� (x)�E0[j� ]� � Z d3y j0(y)� = 0 : (72)The subsidiary condition implies charge (rather than number) conservation.This variational principle is utilised directly in relativistic extended Thomas-Fermi (RETF) models [22, 23, 20], in which an approximate density functionalrepresentation of E0[j�] is speci�ed. The mainstay of applications are, however,the3.2 Relativistic Kohn-Sham equationsThe �rst step necessary to set up this scheme [24] is the representation of theexact four current of the interacting system in terms of auxiliary spinors [20],j�(x) = j�vac(x) + j�D(x) : (73)The vacuum polarisation current j�vac is given as [25]j�vac(x) = 12� X�k��m'k(x)
�'k(x)� X�m<�k 'k(x)
�'k(x)� ; (74)where we do not specify a necessary counterterm in this equation and in thefollowing. The current due to occupied discrete orbitals isj�D(x) = X�m<�k��F 'k(x)
�'k(x) : (75)



Relativistic Density Functional Theory 13This result follows directly from the charge conjugation invariant form of thefour current operator (which has been speci�ed beforehand) if one considers asystem of noninteracting particles.In the same vein one de�nes the noninteracting kinetic energy (including amass term)Ts[j� ] = Ts;vac[j� ] + Ts;D[j� ] ; (76)Ts;vac[j� ] = 12 Z d3x � X�k��m'k(x)h� i
 � r+mi'k(x) (77)� X�m<�k 'k(x)h� i
 � r+mi'k(x)� ;Ts;D[j� ] = Z d3x X�m<�k��F 'k(x)h� i
 � r+mi'k(x) : (78)Ts;vac is the kinetic contribution to the so-called Casimir energy [11] (again nocounterterms displayed), while Ts;D results from bound real electrons.Adding and subtracting Ts as well as the covariant Hartree energy,EH [j� ] = 12 Z d3x Z d4y j�(x) D(0)�� (x� y) j�(y) ; (79)for time independent currents= e22 Z d3x Z d3y j�(x) j�(y)jx� yj ; (80)to the total energy, one can rearrange the ground state energy asE0[j�] = Ts[j�] +Eext[j�] + EH [j�] +Exc[j�] ; (81)with the exchange-correlation energyExc[j�] = F [j�]� Ts[j�]� EH [j�] (82)as usual.MinimisingE0 with respect to the auxiliary orbitals leads to the most generalrelativistic Kohn-Sham (KS)-equations
0n� i
 � r+m + eV= (x) + v=H(x) + v=xc(x)o'k(x) = �k'k(x) ; (83)with the e�ective potentialsv�H (x) = e2 Z d3y j� (y)jx� yj (84)v�xc(x) = �Exc[j�]�j�(x) : (85)



14 Reiner M. Dreizler and Eberhard EngelThis set of equations has to be solved selfconsistently, leading in principle to theexact j�(x) and hence energies etc.A glance at the ingredients of the general relativistic KS-scheme reveals aproblem of considerable di�culty. For instance, the evaluation of the vacuumcontributions (in j� and Ts) requires summation over all negative and positiveenergy solutions (as well as renormalisation) in each step of the selfconsistencyprocedure. All e�ective potentials involved are endowed with a Minkowski spacestructure.Fortunately, for practical electronic structure calculations two approxima-tions are possible:1. The most important simpli�cation arises from the no-sea approximation,in which all radiative corrections are neglectedj�vac = 0 Ts;vac = 0 Exc;vac = 0 : (86)If necessary, one may evaluate these contributions perturbatively, that is af-ter selfconsistency has been achieved without these terms. This approxima-tion should be useful for all systems of interest, with the exception possiblyof super-heavy atoms.2. For the case that the external potential is purely electrostatic (a situa-tion commonly encountered in electronic structure calculations), the chargedensity is the only relevant variable, for instance via~EH [n] = EH [n; j[n]] ; ~Exc[n] = Exc[n; j[n]] : (87)As a consequence the Hartree and the xc�potentials only consist of a time-like component (rather than a four vector structure), so e.g.v�H (x) = (~vH (x); 0) (88)with ~vH(x) = � ~EH [n]�n(x) = �EH [j� ]�n(x) +Xk Z d3x0 �EH [j�]�jk(x0) �jk(x0)�n(x) (89)as there is an explicit functional dependence of j.The resulting electrostatic, no-sea KS-equations are (all ~ are dropped)n� i��r+ �m + Vext(x) + vH(x) + vxc(x)o'k(x) = �k'k(x) ; (90)where the density and the three current are given byn(r) = X�m<�k��F '+k (x)'k(x) (91)j(r) = X�m<�k��F '+k (x)� 'k(x) : (92)



Relativistic Density Functional Theory 15One should note that the exact current j[n] has been replaced by the KS currentj(r). The KS current is not necessarily identical with the (unknown) functionalj[n], but expected to be an acceptable approximation. In any case, possibledi�erences that arise (eg. from inserting j[n] in the transverse Hartree energy)are absorbed in a rede�nition of Exc.One may also decompose the interaction mediated by the free photon propa-gator into a Coulomb (longitudinal) and a transverse part (as discussed before)D(0)�� (x� y) = g�0g�0 e2j x� y j �(x0 � y0) +DT�� (x� y) : (93)If one neglects the transverse part, one obtains the longitudinal limit of RDFT,which corresponds to the use of the Dirac-Coulomb Hamiltonian, a kind of stan-dard in quantum chemistry. Inclusion of the transverse term recovers the retar-dation and magnetic e�ects, which are usually included in a weakly relativisticlimit in the form of the Dirac-Coulomb-Breit (DCB) Hamiltonian.One of the problems often encountered in the application of DFT is to ensurethat sel�nteraction e�ects contained in the Hartree term are properly cancelledby the x-energy functional. This problem can be handled if one de�nes the x-energy in terms of KS-orbitals. For this purpose one starts with the de�nitionof the covariant exchange energyEx = 12 Z d3x Z d4y D(0)�� (x � y) trhSF (x; y) 
� SF (y; x) 
�i : (94)If one evaluates the propagator in the KS-picture,SF ! SKS = �i��(x0 � y0) X�n>�F 'n(x) 'n(y)exp[�i�n(x0 � y0)] (95)� �(y0 � x0) X�F��n 'n(x)'n(y)exp[�i�n(x0 � y0)]� ;and uses the Feynman gauge for the photon propagator, one obtains in theelectrostatic, no-sea approximation the relativistic Fock termEKSx [n] = �e22 Z d3x Z d3y X�m<�k;�l��F cos(!kljx� yj)jx� yj (96)�'k(x)
�'l(x) 'l(y)
�'k(y) ;with !kl = j �k � �l j : (97)The functional dependence of EKSx on n arises via the functional dependence ofthe KS-orbitals on n. The correlation energy is thenEKSc = Exc �EKSx : (98)



16 Reiner M. Dreizler and Eberhard EngelThe x-potential corresponding to EKSx can not be evaluated directly viavKSx (x) = �EKSx [n]�n(x) : (99)In order to obtain this quantity, one has to activate the relativistic extension ofthe3.3 Optimised potential methodThe optimised potential method (OPM) [26, 27, 28, 29, 30, 21] relies on the factthat the functional derivative of an energy expression with respect to the densitycan be evaluated with the aid of the chain rule�E�n(x) =Xk Z d3x0d3x00 �E�'i(x0) �'i(x0)�vKS(x00) �vKS(x00)�n(x) + c:c: ; (100)if the dependence on the density is implicit via the orbitals. The quantity�vKS(x0)=�n(x) is the inverse KS response function. For the functional deriva-tive of the orbitals with respect to the potential an explicit result can be derivedfrom the KS equations (which also allows the direct evaluation of the KS re-sponse function) �'k(x)�vKS(y) = � Gk(x; y)'k(y) (101)with Gk(x; y) = X�m<�l<m;l6=k 'l(x)'+l (y)(�l � �k) : (102)Finally, the functional derivative of the energy with respect to the orbitals isknown if the energy is speci�ed as E = E['i; �'i].The standard procedure can readily be applied to the exchange term (ana-loguous to the original derivation given by Talman and Shadwick [27]) and leadsto the ROPM integral equation for the x-potentialZ d3x0K(x; x0)vx(x0) = Q(x) ; (103)with K(x; x0) = X�m<�K��F '+k (x)Gk(x; x0)'k(x0) + c:c: (104)Q(x) = X�m<�k��F Z d3x0 '+k (x)Gk(x; x0)�EKSx [n]�'+k (x0) + c:c: ; (105)



Relativistic Density Functional Theory 17which corresponds to the electrostatic, no-sea limit. A covariant extension canreadily be derived.This integral equation has to be solved selfconsistently together with the KS-orbital equations. In this fashion one establishes the functional relation betweenvKS and n, implicitly. One advantage of the OP-method is (as advertised) thefact that sel�nteraction e�ects are cancelled correctly. If one adjusts a trivialconstant, so that vx(r !1) = 0 (106)one �nds for �nite systems the asymptotic behaviourvROPMx (r !1) = �1r : (107)The OP-procedure can be applied for the full x-energy (longitudinal as well astransverse). It produces spinor solutions that do not depend on the gauge of thefree photon propagator D(0)�� , justifying in retrospect the use of the Feynmangauge in the de�nition (By contrast gauge problems arise for the transverse,nonlocal, orbital-dependent Dirac-Fock exchange).As the three current j(x) is a trivial functional of the orbitals and the orbitalsare functionals of the density, the procedure establishes (indirectly) a functionaldependence of the form jKS;OPM = jKS [n] : (108)The selfconsistent OPM-procedure is much more involved than the direct KS-scheme. For this reason a search for some shortcuts seems mandatory. This aspectas well as a valuation of numerical results will follow later.As a �nal point of this section on fundamentals, we take a brief look at theweakly relativistic limit of the theory and the connection with nonrelativisticcurrent density functional theory [31, 32, 33].3.4 Weakly relativistic limitThe standard weakly relativistic limit of the QED Hamiltonian can be obtainedwith techniques as the low order Foldy-Wouthuysen transformation or by directexpansion. The results (all constants reinstated in this case) is the Pauli-typeHamiltonianĤP = Z d3x '̂+(x)� 12mh(�i�hr)2 + 2i�h ec V (x) � r+ e2c2 V (x)2i (109)� e�h2mc � � �r� V (x)�+ eV0(x)�'̂(x) + Ĥee :The notation implies{ '̂(x) is a nonrelativistic �eld operator with a two component structure{ � are the Pauli matrices



18 Reiner M. Dreizler and Eberhard Engel{ Ĥee represents the standard Coulomb interaction as the limit of the rela-tivistic e� � e� interaction.For the further discussion it is relevant to note that the gauge term e2c2 V 2 is oforder 1=c2, while the other terms are at most of order 1=c.The weakly relativistic limit of the three current operator can be extractedwith the same techniques leading toĵ(x) = ĵp(x) � ec r� m̂(x)� emc V (x)n̂(x) : (110)It contains the paramagnetic current operatorĵp(x) = � i�h2m h'̂+(x)�r'̂(x)�� �r'̂+(x)�'̂(x)i ; (111)the magnetisation-density operatorm̂(x) = � e�h2mc '̂+(x)�'̂(x) ; (112)and the standard density operatorn̂(x) = '̂+(x)'(x) : (113)In discussing the gauge structure of the problem at hand, some di�culties seemto arise. One �rst notes that the Pauli Hamiltonian is invariant under the gaugetransformation'̂0(x) = e�ie�(x)=�h'̂(x) ; V 0(x) = V (x)� cr �(x) ; (114)that is ĤP ('̂0; V 0) = HP ('̂; V ) : (115)Concerning the currents one can state that the paramagnetic current ĵp(x) isnot invariant under this gauge transformation, but the combinationĵp(x)� emc V (x) n̂(x) (116)and hence the total nonrelativistic current ĵ(x) is invariant.The problem arises if one reexpresses the Hamiltonian in terms of the (phys-ical) current and density operatorsĤP = T̂ + Ĥee � Z d3x�� ecV (x) � ĵ(x) + �eV0(x) � e22mc2 V̂ 2(x)�n̂(x)� : (117)This form suggests that n and j are the basic variables of the theory, but it isnot possible to prove a HK-theorem with this Hamiltonian, establishing E0 =E0[n; j], which seems to contradict the statements of RDFT at �rst glance. Theresolution of this dilemma is the fact that not all terms of order 1=c2 are includedin ĤP , i.e. the Hamiltonian is not consistent with respect to an expansion in1=c. The contribution to ĤP which does not allow the proof of a HK-theoremis the gauge term e2c2 V 2. This means: If one neglects all terms of the order 1=c2consistently, the proof of a HK-theorem with n and j as basic variables is possible.It remains to be investigated whether inclusion of all terms of order 1=c2 leadsto a consistent gauge invariant result to that order.



Relativistic Density Functional Theory 194 FunctionalsApplications of RDFT may, as in nonrelativistic DFT, either use the KS-schemeor RETF-methods. In the �rst instance knowledge ofExc[j�] resp vxc([j�]; x)is required. For RETF-applications one needs, in addition, an explicit densityfunctional representation of the noninteracting kinetic energyTs = Ts[j�] :We shall start the discussion by consideration of Exc. The simplest approxima-tion for this quantity is obtained in the4.1 Relativistic local density approximation (Exc)The procedure used to establish the relativistic LDA (RLDA) is exactly thesame as in the nonrelativistic case [4]. One calculates the energy density of therelativistic homogeneous electron gas (RHEG) and replaces the constant densityn0 by a locally varying density,ERLDAxc [n] = Z d3x eRHEGxc (n0 = n(x)) : (118)A dependence on the three current does not occur, as the spatial current vanishesfor a homogeneous system jRHEG = 0 : (119)In the nonrelativistic case rather accurate Monte Carlo results [34] are availablefor the correlation contribution (the x-contribution can be obtained analytically).No Monte Carlo results exist in the relativistic case. This means that one has tostart from scratch with the evaluation of diagrammatic contributions, as far asthis is possible.The di�erence compared to the nonrelativistic case is the fact that evaluationof the various contributions to eRHEGxc is more involved in the relativistic case.We shall demonstrate some of the details for the simplest case eRHEGx , which isgiven by (see eq.(94))eRHEGx = 12 Z d4y D(0)�� (x�y) tr[S(0)F (x�y)
�S(0)F (y�x)
� ]+CT�V EV; (120)where the fermion propagators are the propagators of the RHEG. Going over tomomentum space, one haseRHEGx = 12 Z d4q(2�)4 Z d4p(2�)4 D(0)�� (q) trhS(0)F (q � p) 
� S(0)F (p) 
�i (121)+ CT � V EV :



20 Reiner M. Dreizler and Eberhard EngelIn diagrammar the loop integral and the VEV look like this,eRHEGx = i2� ??��������t������������t 66� ?����r������������r 6� + CT : (122)The electron propagators in the �rst term decompose into a vacuum and densitypart. Thus the x-bubble corresponds to��������t������������t = ����r��������������r +����Dr��������������r +����Dr��������������r +����DDr��������������r :Only the density-density loop gives a �nite contribution. In the three remainingterms we recognise the divergent vacuum polarisation?����rr 6and the selfenergy insertions ?��r������������r = ��r������������r 6.The �rst term is cancelled by the VEV, the (identical) selfenergy subgraphs haveto be renormalised by appropriate counterterms,eRHEGx = i2�2�����Dr��������������r ���Dr � r � +����DDr��������������r � : (123)The �rst term is thus seen to contain the renormalised vacuum-selfenergy inser-tion, eRHEGx;1 = �i Z d4p(2�)4 trhS(0)D (p) �(1)vac;ren(p)i : (124)This term vanishes for the following reason. The propagator SD(p) contains thefactor (p= + m) and the renormalised selfenergy insertion satis�es the on-shellcondition h(p=+m)�(1)vac;ren(p)ip2=m2 = 0 : (125)Thus only the �nite density-density term remains. All vacuum corrections havebeen eliminated by the standard renormalisation scheme. The remaining termeRHEGx;2 � eRHEGx = 12 Z d4p(2�)4 d4q(2�)4 D(0)�� (q) trnS(0)F;D(q � p)
�S(0)F;D(p)
�o(126)



Relativistic Density Functional Theory 21can be evaluated in a straigtforward manner [35, 36, 37], givingeRHEGx = �� e24�3 k4F��x(�) (127)�x(�) = 1� 32� �� � 1�2 arsinh(�)�2 (128)� = (3�2n0)1=3m = kFm ; � = (1 + �2)1=2 : (129)Using the decomposition of the photon propagator into a longitudinal and atransverse part, one can split eRHEGx into corresponding contributions [38],�Lx (�) = 56 + 13�2 + 2�3� arsinh(�) � 2�43�4 ln(�) � 12� �� � arsinh(�)�2 �2 (130)�Tx (�) = 16 � 13�2 � 2�3� arsinh(�) + 2�43�4 ln(�) � ��� � arsinh(�)�2 �2 : (131)The variation of the relativistic correction factors is illustrated in Fig.4.1 of[6]. One �nds that the longitudinal part does not di�er very much from thenonrelativistic limit. The transverse correction factor is negative and small forlow densities. It grows, however, su�ciently in magnitude so that the total x-energy density changes sign at about � = 2:4. As for instance the maximaldensity in Hg amounts to � � 3, one realizes that relativistic e�ects should berelevant for the inner shells of atoms.One may look a bit more closely at the transverse part. It can either bedecomposed into a magnetic and a retardation contribution or one may considerexpansion in the weakly relativistic limit, giving the Breit contribution. Onethen �nds that retardation and magnetic e�ects have opposite signs, the latteris dominant though. The Breit limit reproduces the exact transverse correctionfactor over the full range of density values of interest quite closely.The calculation (including the renormalisation) becomes more involved if oneaddresses correlation contributions. As a matter of fact the only correlation con-tribution that has been evaluated is the relativistic random phase approximation(RPA) [35, 37, 39, 40]. It corresponds to the following diagrams,�ieRPAxc = ??��������tt 66������������������������������������������������??��������tt 66 + ??�
������tt66����������������??�
������tt66��������������������������������������������������������??"!# &%'$tt 66+ : : :� ?����rr 6������������������������������������������������?����rr 6 � ?����rr 6����������������?����rr 6��������������������������������������������������������?&%'$rr 6� : : : + CT;



22 Reiner M. Dreizler and Eberhard Engelwhere the vacuum subtraction and the fact that counterterms are necessary hasbeen indicated. Just to illustrate the diagrammatic games, we give an alternativerepresentation of the diagrams�������
��ks s������--"!# &%'$s s�� + s����skgs������skgs����s--"!# &%'$�� + : : : ;which indicates that the RPA corresponds essentially to an exchange type term,in which the free propagator (that is the free interaction) is replaced by a specif-ically screened interaction. We will not go through the messy details of furtherprocessing the corresponding equations, but rather look at an indication of the�nal result in diagrammar,�ieRPAc;s = ??��������Dtt 66�������������
��DV �������������������������
��DV ������������??��������Dtt 66+ ??�
������D 66tt���������
��DV ��������??�
������D 66tt���������
��DV �����������������������������
��DV ��������������������??"!# &%'$D 66tt + : : : :Here the D in the electron loops indicate that only the electron gas part has tobe inserted there��������Dt t = �(0)��;D(q) = ����Dr r +����Dr r +����DDr r :The wiggly line with DV is the full vacuum photon propagatorD��;V (q)ren = g�� DV (q)ren (in Feynman gauge) (132)with DV (q)ren = D(0)V (q)1�D(0)V (q)�vac(q)ren : (133)The series of RPA-subdiagrams can be resummed [35, 37, 41] leading to a struc-ture of the form eRPAc / Z d4p(2�)4�ln[1 � D�]�D�� (134)for both the longitudinal and transverse contributions. These integrals have onlybeen evaluated in some approximations. In the no-sea approximation the fullphoton propagator is replaced by the free propagator,Dvac(q)ren �! D(0)(q) :



Relativistic Density Functional Theory 23In the no-pair approximation (corresponding to the standard procedure in quan-tum chemistry) one also uses the free photon propagator and evaluates in addi-tion the polarisation insertion as�(0)(q)no�pair = +?����rr 6+ ; (135)with the electron propagator on the basis of the decomposition (52). Thus inboth cases one neglects the screening e�ects due to the vacuum. In addition,there is a (slight) di�erence in results due to the di�erent evaluation of thepolarisation insertion [42].Even with these approximations the �nal result can only be obtained nu-merically. Writing the longitudinal as well as the transverse contribution of theno-sea result in the formeRPAc (n0) = neRPAc (n0)ononrel�RPAc (�) ; (136)one �nds that the correction factors can, as in the case of exchange, can be quitesubstantial for higher densities [6].Further diagrams have not been evaluated for the relativistic homogeneouselectron gas, but a number of high density limits are available. To second order(e4) two additional correlation diagrams contribute,"!# &%'$t t������������������������������������t t � &%'$r r����������������������������������������r r + 2 "!# &%'$tt������������������������������������tt � 2 &%'$rr������������������������������������rrBoth diagrams require renormalisation beyond the vacuum subtraction indi-cated. In the high density limit one �nds [43] for their total contribution,e(2)c (n0) �!�>>1 e412�4 k4F�� 3:18� 0:12� : (137)In addition the two loop contribution to the screened exchange [43],�������
��DV ������--"!# &%'$t t�� ,which is not contained in the no-sea approximation, can also be calculated inthis limit, e(2)x (n0) �!�>>1 e412�4k4F� ln(2�) � 116 � : (138)By comparison, for the no-sea RPA-result one has [35, 37]eRPAc (n0) �!�>>1 e412�4k4F�� 7:796� : (139)



24 Reiner M. Dreizler and Eberhard EngelOne notes that in the limit considered, the additional second order contributionsamount to about 40% of the RPA value and that in the extreme high density limitthe screened exchange contribution eventually dominates over all other knowncontributions. This occurs, however, only for � � 103, which is not relevant forelectronic structure calculations.4.2 Relativistic generalised gradient approximation (Exc)As the x and RPA correlation contributions in LDA are known not to yield opti-mal results (for atoms and other systems) in the nonrelativistic case, one has toconsider improvements. The next step (thinking of the history for nonrelativisticsystems) would be direct gradient expansions [44, 45, 46, 47, 48, 49, 50, 51]. Theproblem is, that the corresponding contributions as e.g.&%'$��������������������r rssI� 	R ; &%'$����������������rr ss6 ?; &%'$����������������rrss6 ?of the homogeneous electron gas are di�cult to evaluate (and have not beenevaluated) for relativistic systems. In addition, they have not been found to bevery accurate in the nonrelativistic regime. In order to make some headway, wehave carried through the following scheme [52, 53]:For the x-partStep 1: Solve the KS-OPM problem for a selection of atoms with closed subshells(17 atoms were chosen).Step 2: Use the results to set up a semiempirical relativistic generalised gradientapproximation (GGA), relying on the formEGGAx;rel [n] = Z d3x eLDAx (n)h�x;0(�) + g(�)�x;2(�)i : (140)For the function g of the dimensionless density gradient� = (rn)2 = �4n2(3�2n)2=3� (141)we choose nonrelativistic GGA forms. We used the Becke 88 [54], the Engel-Chevary-Macdonald-Vosko 92 [55] and the Perdew-Wang 91 [56] forms and foundthat �nal results for Ex only varied marginallywith g(�). The function �x;0 is theLDA relativistic correction factor indicated earlier. For the relativistic correctionfactor �x;2 we choose a reasonably 
exible ansatz in the form of a [2/2] Pad�e-approximant, �x;2(�) = a0 + a1�2 + a2�41 + b1�2 + �2�4 : (142)



Relativistic Density Functional Theory 25The form can be used for both the longitudinal and the transverse contributions,if one sets aL0 = 1 aT0 = 0 ; (143)which guarantees that the correct weakly relativistic limit is obtained. The factthat �x;2 must be an even function of � follows from the time reversal invariance.Step 3: The coe�cients have been �tted to the exact relativistic correction tothe longitudinal exchange energy,�ELx = ELx;rel[nrel]� Ex;nrel[nnrel] ; (144)and the exact transverse exchange energy ETx;rel[nrel], with all quantities beingobtained by corresponding ROPM calculations. Explicit results, indicating theirquality, will be shown in Section 5. For the moment we look at an illustration of
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total# "transverse"longitudinal�x;2(�) � = �h(3�2n) 13 =(mc)Fig. 1. Relativistic correction factors for the gradient contribution to the exchangeenergy density for both ECMV92 (solid line) and B88 (long dashes). Also shown is therelativistic correction factor for the second order gradient correction for Ts[n] (shortdashes).the correction factors for the B88 and ECMV92 GGAs (Fig.1) and an abbrevi-ated comparison of the constants in the Pad�e-ansatz for various GGA functionalsand the longitudinal term:



26 Reiner M. Dreizler and Eberhard EngelFunctional aL1 aL2 bL1 bL2B88 [54] 2.209 0.669 1.331 0.795ECMV92 [55] 2.213 0.669 1.330 0.795PW91 [56] 2.216 0.670 1.327 0.794It remains to be stated that we also used other Pad�e-forms (eg. [3/3]) without�nding signi�cant improvements.For the case of the correlation term basic data are hard to come by. In thiscase a more global form [53],EGGAc;rel [n] = Z d3x eGGAc;nrel(n; (rn)2; : : :) �c(�) (145)has been �tted to second order perturbation theory results (on the basis ofa Dirac-Coulomb-Breit Hamiltonian) for the Neon isoelectronic series [57], asit seemed to be the most systematic set of quantum chemical data available.For the nonrelativistic GGA the Perdew-Wang 91 [56] and the Lee-Yang-Parr[58] forms have been used, �c is again a [2/2] Pad�e-approximant. The �ttingprocedure used �Ec = Ec;rel[nrel]� Ec;nrel[nnrel] (146)as before, in order to suppress errors in the individual energy values as much aspossible.The last functional to be discussed is the4.3 Relativistic gradient expansion for Ts[n]As already indicated, this functional is of interest for RETF-applications. Wediscuss it for two reasons. First, it provides another example for the need ofrenormalisation. Second, the results exhibit a certain amount of physics [59, 22].The starting point of the discussion is the de�nition of the exact kineticenergy and the exact current in terms of the exact fermion propagatorT [j�] = � i Z d3x limy!xs trh�� i
 � r+m�SF (x; y)i � V EV + CT (147)j�(x) = �i limy!xs trhSF (x; y)
�i� V EV + CT : (148)The symmetric limit indicated is de�ned aslimy!xs � 12 � limy!x;y0>x0 + limy!x;y0<x0 ������(x�y)2�0 : (149)It is the relativistic equivalent of the nonrelativistic limitlimy!x limty!t+x :



Relativistic Density Functional Theory 27The de�nitions given are quite general. In order to arrive at the noninteractingsituation, one has to replace the exact fermion propagator by the KS propagator,which can be speci�ed alternatively by the di�erential equation [60](i@=x �m� v=KS(x)) SKSF (x; y) = �(4)(x� y) : (150)The standard perturbation expansion of this propagator in powers of the poten-tial can be indicated in diagrammar as66KS = 66+ 6666t����������������� + 666666tt���������������������������������� + � � � .We have seen the explicit form in terms of KS-orbitals before. Renormalisationis not necessary.The symmetric limit required for the calculation of Ts and j� correspondsto closing the ends of the fermion lines, after supplying them with the requiredweight, that is�ij� = t��������66+ t��������t�-�- ������������� + t��������tt�-�- �������������������������� + � � � � V EV + CT�iTs = Z d3x � c���������66+ c���������t�-�- ������������� + c���������tt�-�- �������������������������� + � � � ��V EV + CT :We recognise outermost loops (integration), which introduce, as in standardQED without external �elds, UV-divergencies. It does not make any di�erencewhether the virtual electron-positron pairs involved in the loops are generated bythe photon �eld or by an external potential. As a consequence the renormalisa-tion procedure is the same as the procedure that one uses for the renormalisationof the propagators of vacuum QED. A quick inspection for j� shows that onlythe second diagram on the right-hand side is divergent. For the vacuum fourcurrent all contributions with an odd number of vertex points in the loop vanishdue to Furry's theorem. From the remaining diagrams,r����r�- ������������� + r����rrr�- ��������������������������������������� + � � � ;



28 Reiner M. Dreizler and Eberhard Engelonly the �rst one needs to be renormalised.To see how this works, one has to evaluate TS and j� explicitly. We do thisusing a semiclassical gradient expansion as a �rst step.In order to obtain the semiclassical gradient expansion (an expansion in termsof derivatives of the e�ective KS-potential) one solves the di�erential equation forthe propagator explicitly by iteration [60]. The general ansatz for the iterationis the expansion (dropping the index KS)SF (x; y) = e�i(x�y)�v(x) Z d4p(2�)4 e�ip(x�y) 1Xk=0 S[k]F (p�; v�(x)) : (151)The index [k] denotes the order of the potential gradients involved. Insertion ofthe ansatz into the di�erential equation yields the recursion(p=�m)S[k]F (p�; v�(x)) = �(i@=v�(x)) @@p� � i@=�S[k�1](p�; v�(x)) : (152)The starting point for the recursion is the solution of the di�erential equationfor a constant potential,S[0]F (p�; v�) = S[0]F;vac(p)�2�i (p= +m)2E �(p0�E) �(�F �v0�p0)����v0=v0(r) : (153)As an example of the explicit results at this level, we look at the second ordersemiclassical gradient expansion of the density n and the kinetic energy densityts for the case of a purely electrostatic external potential v� = (v0; 0),~n[v0]reg = p33�2 + 112�2��2� d2�(r2v0) (154)� 112�2(�Ep + 2arsinh� pm��(r2v0) + �E2p2 � 3� (rv0)22p )~ts[v0]reg = m416�2��2� d2�+ 18�2(pE3 + p3E � arsinh� pm�) (155)+ 124�2��2� d2�(rv0)2 � 112�2�E2p + p�(r2v0)� 112�2 �E32p3 � Ep + arsinh� pm��(rv0)2 ;where E = �F � v0(x) ; p =pE2 �m2 �(E2 �m2) : (156)The results have been obtained with dimensional regularisation. One recognisescontributions which diverge in the limit d! 4. There is a divergent contribution



Relativistic Density Functional Theory 29to the kinetic energy due to the Dirac-sea, which is removed by vacuum energysubtraction < vacjĤejvac > = m416�2 ��2� d2� : (157)The UV divergencies (proportional to �v0) are removed by the same counter-terms which are the lowest order contribution to the vacuum polarisation inser-tion in standard QED without external �elds.After renormalisation has been carried out, one has �nite (in the limit d! 4)expressions of the form j�(x) = j�(v�(x);rv�(x); : : :) (158)ts(x) = ts(v�(x);rv�(x); : : :) : (159)The last step is the derivation of a current (or density in the electrostatic case)gradient expansion. This is obtained by order by order inversion of the �rstrelation v�(x) = v�(j�(x);rj�(x); : : :) (160)and insertion into the second relation.We �rst give the results for the case of an electrostatic external potential tothe fourth orderTRGE0s [n] = Z d3x (3�2n)5=310�2m 10�5 �18���3 + �3� � arsinh(�)� � 13�3� (161)TRGE2s [n] = 172m Z d3x (rn)2n 1� �1 + 2�� arsinh(�)� (162)TRGE4s [n] = Z d3x htRGE4s;V [n] + tRGE4s;D [n]i (163)tRGE4s;V = 1360�2�3�2�2 (r2�)2 + 6 ��4 (r2�)(r�)2 + 3� �4�2�6 (r�)4�tRGE4s;D = 15760�2�4(r2�)2�� �3(1� 4�2) + 5�1 + 2�� arsinh(�)�2�+ 2(r2�)(r�)2�2�3 �� 41�2 + 20�1 + 2�� arsinh(�)�� ��2 + �22 + 2�� arsinh(�)��+ (r�)4�3�5 �3� 19�2 � 8�4 + 8�6 + 16�8+ 20��2 + �22 + 2�� arsinh(�)�2�� ;and o�er the following comments



30 Reiner M. Dreizler and Eberhard Engeli The zeroth order contribution to the kinetic energy density is the TF (rela-tivistic homogeneous electron gas) result, already obtained by Vallarta andRosen in 1932 [61].ii The second and fourth order terms were only obtained in 1987 [22] and 1991[62]. While the results for the second order term are quite compact, the resultfor the fourth order term looks somewhat messy. It contains explicit radiativecorrections (t(4)s;vac), which correspond exactly to the Euler-Heisenberg energy(for the case of an electrostatic potential).iii The relativistic results go, for small value of �, over into the correspondingnonrelativistic results [63, 64].iv An illustration of the relativistic correction can readily be given for the zerothand the second order. In this case the ratio t[k]s;rel=t[k]s;nonrel is a function of �alone. As in the case of exchange and correlation the relativistic correctionsare noticable, especially for the case of t[2]s (see Fig.1).v The same technique can be applied to the generation of a current gradientexpansion for the case of a full four potential [65]. Obviously, there are nozeroth order current terms (they vanish in a homogeneous system). Thecurrent contribution to t[2]s has the form (� = (3�2n)1=3=m)TRGE2s [n; j] = 316 Z d3x 1arsinh(�(x)) (164)� Z d3y Z d3z 3Xk;l=1 @ykjl(y)@zkjl(z) � @ykjl(y)@zl jk(z)jx� yj jx� zj :As we will not discuss applications of the RETF model [23, 66] in the following,we o�er one brief remark at this point. The model is given byE[2K]0 = KXi=0 T [2i]S [n] +Eext[n] + EH [n] + ELDAx [n] (165)and often combined with a spherical average of the system. Evaluation of thedirect variational equations reproduces the gross features of atoms, but does notreproduce quantal e�ects like the shell structure. As the model does not involvecorrelation contributions comparison with Dirac-Fock-Slater results is adequate.The results show that the accuracy that can be obtained in the relativistic caseis comparable to the accuracy in the nonrelativistic case.5 Applications to atomsA standard approach to relativistic Coulomb problems is the Dirac-Fock-Slater(DFS) approximation, in which the kinetic energy is treated fully in termsof relativity, while the nonrelativistic x-only LDA is used for the exchange-correlation energy. There are few investigations that use the relativistic LDAexchange functional and only a scatter addressing relativistic correlation e�ects



Relativistic Density Functional Theory 31(see eg.[19, 67, 38, 68, 69, 70, 21, 71, 72]). In view of this state of a�airs we setourselves as a �rst goal a more detailed investigation of the quality of the RLDAfunctionals that are available.We begin, however, by looking at ROPM-results in the x-only approxima-tion [21] in order to assess relativistic e�ects in a more global fashion. Table 1Table 1. Longitudinal ground state energies (�ELtot) and highest occupied eigenvalues(��Lmk) for closed subshell atoms from nonrelativistic OPM (NROPM [73]), relativisticOPM (ROPM [21]) and relativistic HF (RHF [8]) calculations [74] (all energies are inhartree).Atom �ELtot ��LmkNROPM ROPM RHF NROPM ROPM RHFHe (1s1/2) 2.862 2.862 2.862 0.918 0.918 0.918Be (2s1/2) 14.572 14.575 14.576 0.309 0.309 0.309Ne (2p3/2) 128.545 128.690 128.692 0.851 0.848 0.848Mg (3s1/2) 199.611 199.932 199.935 0.253 0.253 0.253Ar (3p3/2) 526.812 528.678 528.684 0.591 0.587 0.588Ca (4s1/2) 676.751 679.704 679.710 0.196 0.196 0.196Zn (4s1/2) 1777.828 1794.598 1794.613 0.293 0.299 0.299Kr (4p3/2) 2752.028 2788.848 2788.861 0.523 0.515 0.514Sr (5s1/2) 3131.514 3178.067 3178.080 0.179 0.181 0.181Pd (4d5/2) 4937.858 5044.384 5044.400 0.335 0.319 0.320Cd (5s1/2) 5465.056 5593.299 5593.319 0.266 0.282 0.281Xe (5p3/2) 7232.018 7446.876 7446.895 0.456 0.439 0.440Ba (6s1/2) 7883.404 8135.625 8135.644 0.158 0.163 0.163Yb (6s1/2) 13391.070 14067.621 14067.669 0.182 0.196 0.197Hg (6s1/2) 18408.313 19648.826 19648.865 0.262 0.329 0.328Rn (6p3/2) 21865.826 23601.969 23602.005 0.427 0.382 0.384Ra (7s1/2) 23093.258 25028.027 25028.061 0.149 0.167 0.166No (7s1/2) 32787.471 36740.625 36740.682 0.171 0.209 0.209shows ground state energies for neutral, spherical (that is closed subshell) atomsin the no-sea/longitudinal approximation. We concentrate on the �rst threecolumns, in which nonrelativistic OPM-, relativistic OPM- and relativistic HF-results can be compared. One notes that for heavier atoms(a) relativistic e�ects are obviously important,(b) ROPM- and RHF-results agree quite closely.As a speci�c example for comparision we will use the Hg atom (here and in thefollowing). For this atom the relativistic contribution to the total ground stateenergy (in the approximation speci�ed) amounts to�ELtot;1 = EL;ROPMtot � ENROPMtot = �1240:5hartree ;



32 Reiner M. Dreizler and Eberhard Engelwhile the energy di�erence for the two relativistic theories is�ELtot;2 = EL;RHFtot �EL;ROPMtot = �39mhartree :This clearly establishes the need for a relativistic treatment of heavier atomsand shows that the ROPM gives an adequate representation of exchange e�ects.The fact that ROPM results are always slightly higher than RHF-energies canbe understood on the basis of the reduced variational freedom of the ROPMorbitals.The trends indicated are also found for the orbital energies of the highest oc-cupied orbitals (see Table 1). The relativistic 6s1=2-orbital in Hg is more boundby ��6s1=2 = �L;ROPM6s1=2 � �NROPM6s1=2 = �67mhartree = �1:8eV ;while there is little di�erence between the RHF and ROPM orbital energies.The last statement might imply that the orbital energies are the same for allROPM and RHF orbitals. Table 2 (for Hg) demonstrates that this is not thecase. Although the total energies agree quite closely for ROPM and RHF (andwe shall see in a moment that this statement also applies to the individualcontributions to Etot), one �nds eg.�L;RHF1s1=2 � �L;ROPM1s1=2 = �26:80hartree :This di�erence is (as expected) much smaller than the relativistic corrections tothe inner orbital energies��1s1=2 = �L;ROPM1s1=2 � �NROPM1s1=2 = �290:51hartree ;which corresponds to a decrease of about 10.5 %. The percentage change ofthe outer orbital is still very large (25.6% for the 6s1=2 orbital). These resultsdemonstrate that it is dangerous to attach too close a physical interpretation tothe orbitals and their energies.Table 3 shows the longitudinal x-contribution to the total energy in variousapproximations [21, 6]. For this quantity the relativistic correction in Hg amountsto �ELx;1 = EL;ROPMx �ENROPMx = �19:96hartree ;which is still quite substantial. Comparison with the di�erence in the total energyindicates, however, that kinetic and direct potential e�ects constitute about 98%of the total relativistic e�ect. The di�erence between ROPM- and RHF-resultsis again fairly small�ELx;2 = EL;RHFx � EL;ROPMx = �74mhartree :Also included in Table 3 are DFS results. From the di�erence�ELx;3 = EL;RHFx �EDFSx = �10:98hartree



Relativistic Density Functional Theory 33Table 2. Single particle energies (��Lnlj) for Hg from NROPM-, ROPM- andRHF-calculations in comparison with DFS-, and RLDA-results (longitudinal limit, allenergies are in hartree).Level NROPM ROPM RHF DFS RLDA1S1/2 2756.925 3047.430 3074.228 3047.517 3044.4102S1/2 461.647 540.056 550.251 539.713 539.2502P1/2 444.015 518.061 526.855 518.164 517.7462P3/2 444.015 446.682 455.157 446.671 446.3993S1/2 108.762 128.272 133.113 128.001 127.9053P1/2 100.430 118.350 122.639 118.228 118.1483P3/2 100.430 102.537 106.545 102.397 102.3463D3/2 84.914 86.201 89.437 86.085 86.0603D5/2 84.914 82.807 86.020 82.690 82.6684S1/2 23.522 28.427 30.648 28.067 28.0464P1/2 19.895 24.161 26.124 23.871 23.8544P3/2 19.895 20.363 22.189 20.039 20.0304D3/2 13.222 13.411 14.797 13.148 13.1464D5/2 13.222 12.700 14.053 12.434 12.4324F5/2 4.250 3.756 4.473 3.556 3.5594F7/2 4.250 3.602 4.312 3.402 3.4045S1/2 3.501 4.403 5.103 4.290 4.2865P1/2 2.344 3.012 3.538 2.898 2.8965P3/2 2.344 2.363 2.842 2.219 2.2185D3/2 0.538 0.505 0.650 0.363 0.3635D5/2 0.538 0.439 0.575 0.296 0.2966S1/2 0.262 0.329 0.328 0.222 0.222one can infer (in comparison with the di�erence between the relativistic and thenonrelativistic results), that insertion of a relativistic density into a nonrelativis-tic x-functional corrects the deviation from the full relativistic result somewhat.We now look at RLDA-results, �rst again for the case of x-only (Table 4).In the longitudinal limit, the error of the RLDA for the total energy is only ofthe order of 0.1% for the heavier systems (17.20hartree for Hg). If one comparesthis with the error in the x-contribution, one �nds that this error is solely dueto exchange �ELx = EL;ROPMx � EL;RLDAx = �17:59hartree ;which amounts to about 5%. Compared to nonrelativistic systems, this showsthat the relative error of the longitudinal exchange energy is comparable (Be14.5%, Kr 6.1%), so that the LDA-exchange contribution can as well not beconsidered to be su�ciently accurate in the relativistic case.In Table 5 we look at results obtained for the full relativistic x-functional. We�rst note that inclusion of the transverse contribution leads to a higher ground



34 Reiner M. Dreizler and Eberhard EngelTable 3. Longitudinal (Coulomb) x-only energies (�ELx ) for closed subshell atomsfrom NROPM-, ROPM-, RHF-, DFS-, and RLDA-calculations [21, 74] (all energiesare in hartree).Atom NROPM ROPM RHF DFS RLDAHe 1.026 1.026 1.026 0.853 0.853Be 2.666 2.667 2.668 2.278 2.278Ne 12.105 12.120 12.123 10.952 10.944Mg 15.988 16.017 16.023 14.564 14.550Ar 30.175 30.293 30.303 27.897 27.844Ca 35.199 35.371 35.383 32.702 32.627Zn 69.619 70.245 70.269 66.107 65.834Kr 93.833 95.048 95.072 89.784 89.293Sr 101.926 103.404 103.429 97.836 97.251Pd 139.113 141.898 141.930 134.971 133.887Cd 148.879 152.143 152.181 144.931 143.687Xe 179.062 184.083 184.120 175.926 174.102Ba 189.065 194.804 194.841 186.417 184.363Yb 276.143 288.186 288.265 278.642 274.386Hg 345.240 365.203 365.277 354.299 347.612Rn 387.445 414.082 414.151 402.713 394.102Ra 401.356 430.597 430.664 419.218 409.871No 511.906 564.309 564.415 554.242 538.040state energy �Etot = EL;ROPMtot � EL+T;ROPMtot = �22:12hartree :This is in accord with the fact, that the transverse term has an opposite signwith respect to the longitudinal term. The absolute error of the total RLDA-energy has, however, changed to 29.16hartree, an increase by 11.96hartree withrespect to the longitudinal limit. The error in the transverse exchange energy is(see Table 6)�ETx = ET;ROPMx � ET;RLDAx = +22:17� 34:20 = �12:03hartree ;which corresponds to a relative error slightly larger than 50%. Obviously, thereis substantial room for improvement.We next look at the correlation contribution in the LDA. As the correla-tion contribution in heavier atoms in LDA amounts to about 10hartree, with arelativistic correction of the order of 0.5hartree, there is hardly any di�erenceif one performs a variational x-only calculation and evaluates the correlation-contribution with the resulting density or if one performs a more complete vari-



Relativistic Density Functional Theory 35Table 4. Longitudinal x-only ground state energies: Selfconsistent ROPM, RHF,RLDA and RGGA results for neutral atoms with closed subshells (in hartree [74]).Atom �ELtot ELtot �EL;ROPMtotROPM RHF RLDA RPW91He 2.862 0:000 0.138 0:006Be 14.575 �0:001 0.350 0:018Ne 128.690 �0:002 1.062 �0:024Mg 199.932 �0:003 1.376 �0:001Ar 528.678 �0:005 2.341 0:041Ca 679.704 �0:006 2.656 0:026Zn 1794.598 �0:014 4.140 �0:262Kr 2788.848 �0:013 5.565 �0:021Sr 3178.067 �0:013 5.996 �0:008Pd 5044.384 �0:016 7.707 �0:067Cd 5593.299 �0:020 8.213 �0:033Xe 7446.876 �0:019 9.800 0:085Ba 8135.625 �0:019 10.289 0:059Yb 14067.621 �0:048 13.272 �0:893Hg 19648.826 �0:039 17.204 �0:250Rn 23601.969 �0:035 19.677 0:004Ra 25028.027 �0:034 20.460 �0:006ational calculation. As the RPA limit is known not to be an accurate approxi-mation to the correlation energy, we suggest to use [21]ERLDAc [n] = ERPAc;rel [n]�ERPAc;nonrel[n] + ELDAc;nonrel[n] : (166)We use only the relativistic correction to the RPA, which is added to a completenonrelativistic functional (eg. LDA from Monte Carlo [76]). For high densitiesthe RPA contribution in the two nonrelativistic terms cancel, so that the cor-relation energy is given by the relativistic RPA plus the nonrelativistic secondorder exchange graph. For low densities the �rst two terms cancel, so that thecorrelation energy is given by the more adequate nonrelativistic result.One problem that one encounters for heavier elements, is the fact that ex-perimental total energies (and hence experimental correlation energies) are notavailable. (It is di�cult to measure successive ionisation energies of all positiveions for heavier systems.) Thus we compare LDA-results with results obtained insecond order many-body perturbation theory (MBPT) [57]. Table 7 illustratesthe well-known fact that nonrelativistic LDA correlation energies overestimatethe correct values by a factor of about two. As better density functionals areavailable for this quantity, one can concentrate on the relativistic corrections(here with respect to the LDA). One �nds the following situation: While thelongitudinal part agrees with the results of MBPT (at least within a factor of



36 Reiner M. Dreizler and Eberhard EngelTable 5. Total relativistic x-only ground state energies: Selfconsistent ROPM, RLDAand (R)GGA results for neutral atoms with closed subshells in comparison with per-turbative RHF data (in hartree [74]).Atom �EL+Ttot EL+Ttot �EL+T;ROPMtotROPM RHF(p) RLDA RPW91 PW91He 2.862 0:000 0.138 0:006 0:006Be 14.575 �0:001 0.351 0:018 0:017Ne 128.674 �0:002 1.080 �0:024 �0:043Mg 199.900 �0:003 1.408 �0:001 �0:037Ar 528.546 �0:005 2.458 0:041 �0:111Ca 679.513 �0:006 2.818 0:026 �0:195Zn 1793.840 �0:014 4.702 �0:263 �1:146Kr 2787.429 �0:012 6.543 �0:022 �1:683Sr 3176.358 �0:012 7.149 �0:010 �2:014Pd 5041.098 �0:013 9.765 �0:069 �3:953Cd 5589.495 �0:016 10.556 �0:035 �4:538Xe 7441.172 �0:012 13.161 0:083 �6:706Ba 8129.160 �0:010 14.050 0:057 �7:653Yb 14053.748 �0:023 20.886 �0:896 �17:662Hg 19626.702 0:005 29.159 �0:260 �27:256Rn 23573.351 0:026 35.203 �0:012 �35:149Ra 24996.942 0:034 37.391 �0:026 �38:271two, but mostly better), the di�erences for the transverse part are much larger(up to factors of 4). The comparison should not be taken as �nal, as the qualityof the results of MBPT is di�cult to assess, but in view of the large di�erences,it is obvious that also the relativistic correlation-corrections need to be improvedupon.The semiempirical relativistic GGA exchange functional gives very rea-sonable results. We �rst consider the total energies in the x-only limit for thecase of the modi�ed PW91 functional (similar results are obtained for the otherGGA x-functionals that we have investigated). For both the longitudinal as wellas the full exchange the deviation from the OPM-standard is less than 0.2% (forHe), for the heavier systems less than 0.01% (see Tables 4,5). If one then looks atthe x-contributions (Fig.2), one �nds that these quantities are also reproducedvery closely (with an absolute error of less than 100mhartree). The relativisticcorrections themselves for both the longitudinal part as well as the transversepart agree very closely (which should not astonish as these quantities have been�tted).The relativistic GGA correlation functional is not of the same quality(see Fig.3), still there is an order of magnitude improvement for the relativisticcorrelation contribution over the LDA (referred to MBPT as a standard). Thefact that the situation for the correlation contribution is far from settled is



Relativistic Density Functional Theory 37Table 6. Transverse x-only energies (ETx ) for closed subshell atoms: ROPM results incomparison with the values obtained by insertion of ROPM densities into the relativisticLDA (RLDA) and two relativistic GGAs (RECMV92 and RB88) (all energies are inhartree, [74]). Atom ROPM RLDA RECMV92 RB88He 0.000064 0.000159 0.000060 0.000061Be 0.00070 0.00176 0.00071 0.00072Ne 0.0167 0.0355 0.0166 0.0167Mg 0.0319 0.0654 0.0319 0.0319Ar 0.132 0.251 0.132 0.132Ca 0.191 0.356 0.191 0.191Zn 0.759 1.328 0.760 0.759Kr 1.420 2.410 1.421 1.419Sr 1.711 2.878 1.712 1.710Pd 3.291 5.374 3.291 3.291Cd 3.809 6.180 3.809 3.809Xe 5.712 9.114 5.712 5.713Ba 6.475 10.282 6.475 6.477Yb 13.900 21.597 13.895 13.900Hg 22.169 34.257 22.169 22.169Rn 28.679 44.382 28.681 28.680Ra 31.151 48.275 31.149 31.151
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38 Reiner M. Dreizler and Eberhard EngelTable 7. Comparison of LDA [21], CI (estimated from nonrelativistic CI-calculationsfor the three innermost electrons and the experimental ionisation potentials of all otherelectrons [75]) and MBPT2 [57] correlation energies for neutral atoms: ENRc | nonrel-ativistic correlation energy, �ELc | relativistic contribution in the longitudinal corre-lation energy, ETc | transverse correlation energy (in the case of the MBPT2 only thedominating Breit contribution to ETc is given | all energies are in mhartrees).Atom �ENRc ��ELc �ETcMBPT2 CI LDA MBPT2 LDA MBPT2 LDAHe 37.14 42.04 111.47 0.00 0.00 0.04 0.00Be 94.34 224.44 0.02 0.02Ne 383.19 390.47 743.38 0.20 0.38 1.87 0.32Mg 438.28 891.42 0.75 0.57Ar 697.28 722.16 1429.64 0.84 2.60 7.92 1.89Zn 1650.61 2665.20 10.51 10.97 26.43 7.92Kr 1835.43 3282.95 11.39 19.61 41.07 13.10Cd 2618.11 4570.56 35.86 44.79 82.32 28.58Xe 2921.13 5200.19 37.57 64.73 108.75 39.27Hg 5086.24 8355.68 203.23 200.87 282.74 113.08Rn 5392.07 9026.90 195.36 257.00 352.60 138.43
-60

-40

-20

0

20

0 20 40 60 80 100

 
 
 

RLDARLYPRPW91%
ZFig. 3. Relativistic correction �Ec to the correlation energy: Percentage deviation ofselfconsistent RLDA- and RGGA-results from MBPT2-data for Ne isoelectronic series.



Relativistic Density Functional Theory 39illustrated for the case of neutral Xe. For this case the following results areavailable: �Ec = 145mhartree RGGA [53]= 80mhartree RLDA [21]= 146mhartree DCB �MBPT2 [57]= 105mhartree DCB �Coupled� Cluster [77] :6 Final RemarksHere we o�er some remarks on additional points and future problems: The pointthat we did not discuss (although we have a large number of case studies) is thequestion in how far the local quantities (rather than the integrated quantities) arereasonable. This can most easily be discussed by comparison of the correspondingpotentials, which show shell structure and �ner e�ects more closely [21, 6, 52, 53].Obviously, there is much to be done: First the calculations for atoms haveto be extended to the case of nonspherical systems (with the possibility of "spinpolarisation", which in the relativistic case manifests itself in the appearanceof current contributions). Of greater interest is, however, the investigation ofrelativistic e�ects in more complex systems, as for instancei) Diatomic systems! changes in bond lengths, dissociation energies etc.ii) Solids! changes in band structure features (eg. Fermi surfaces) and cohesive prop-ertiesiii) Pseudopotentials! as for heavy atoms even the outermost orbitals are a�ected by relativisticcorrections, there is a modi�cation of the pseudopotential [70]Finally, some topics that have been addressed in the literature but have notbeen presented here (due to the usual lack of time), should at least be recorded.� The discussion of RDFT has been extended to the case of strong, short rangeinteractions on the basis of the �eld theoretical meson exchange model ofnuclear physics, that is quantum hadrodynamics (QHD). Both ETF- [78, 79]as well as KS-applications [80, 81] have been given. In the latter instance itis of interest to note, that, due to the nature of the dominant interaction,results obtained with the x-only LDA agree quite closely with HF-results,which are available for a number of nuclei. The multiplicative character ofthe KS-exchange, however, allows also the consideration of superheavy nuclei[82], which, at the moment, are still not accessible via the HF-approach.� Thermal RDFT has been discussed both on the basis of QED [83] as well asQHD [84]. Applications are restricted to thermal ETF-models [85].
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