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1 OVERVIEW

1. Overview

In 1986 Georg Bednorz and Alex Müller published their experimental observation of a
superconducting critical temperature Tc = 35K in a sample of (La,Ba)2CuO4. The
following year it was found that Y Ba2Cu3O7 has a critical temperature of Tc ≈ 90K
that can not be described within BCS theory any more since the weak electron-phonon
coupling that drives the superconductivity in so-called conventional superconductors
limits the critical temperature to a value of about 40 K.
Another important point is the symmetry of the superconducting gap function that
shows no sign changes in the conventional superconducting compounds but was ob-
served to to bear sign changes of different kinds in the unconventional superconductors
(Sec. 5.2).
Moreover, the phase diagram of unconventional superconductors often shows a pseu-
dogap regime and/or antiferromagnetic ordering in the vicinity of the superconducting
domain. Unconventional superconductivity is one of the remaining mysteries in solid
state theory since the pairing mechanism for the electrons is not known yet. Unlike
the conventional superconductors that reveal mainly phonon driven Cooper pairs in
unconventional superconductors many physicists believe that spin and charge fluctua-
tions are the prevailing pairing mechanisms that can be described within the Hubbard
model.

This work is also inclined towards this explanation and deals therefore with the
numerically approximative solution of the Hubbard model.
Long established methods like the Random Phase Approximation (RPA) or Fluctuation
Exchange Approximation (FLEX) for solving the single-orbital Hubbard model are
violating conservation laws, sum rules concerning spin and charge, the Mermin-Wagner-
theorem and/or the Pauli principle, e.g. calculations that are based on RPA show a
finite temperature phase transition to antiferromagnetism which is prohibited by the
Mermin-Wagner-theorem (continuous symmetries can not be spontaneously broken at
finite temperatures in dimensions d≤2 if a sufficiently strong short-range interaction is
present) and violate the Pauli principle (Sec. 4.2.1).

The Two Particle Self-Consistent Theory (TPSC) that was developed by Y. M. Vilk
and A.-M. Tremblay [1] expresses the spin and the charge susceptibilities as functions
of two irreducible vertices Usp and Uch in a way that the theory obeys conservation
laws and the Pauli principle.
By this ansatz one is not bound to physically adjustable parameters or the applicability
of Migdal’s theorem (vertex corrections for the electron-phonon interaction are O(λωDEF ),
ωD is the Debye frequency and EF the Fermi energy, and can be therefore neglected in
the Migdal-Eliashberg theory for conventional superconductors).
TPSC provides accurate results in the domain of weak to intermediate coupling (U/t�
8 to U/t . 8). Unfortunately, it is not applicable to dimensions d≤1, too deep inside the
renormalized classical regime and for strong coupling except for very high temperatures
(see 4.3.1).

In this work we will start with a presentation of all needed formalisms to be able to
derive and physically motivate TPSC and compare it then to other theories. The main
parts are based on the first complete paper about TPSC [1] and the lecture notes of
A.M.-S. Tremblay [2].
The next part is dedicated to some numerical case studies where we will take a close
look at antiferromagnetic correlations, the pseudogap regime and superconductivity
studied within the linearized Eliashberg equation for square and triangular lattices.
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Finally, we present an outlook to extensions and open problems of TPSC.

Throughout the whole work we use the following units and definitions:

kB ≡ ~ ≡ a ≡ 1 ; a : lattice spacing

β ≡ 1/T

〈·〉 ≡ tr(e−βH ·)
tr(e−βH)

ξ~k ≡ ε~k − µ
f(1, 1′) ≡ f(~r, t;~r′, t′)

f(1, 1)g(1, 1′) ≡
∫
d3r1

∫
dt1f(1;~r1, t1)g(~r1, t1; 1′)

δ(t− t′)δ(~r − ~r′) ≡ δ(1− 1′)

f(ξ~k) ≡
1

eβξ~k + 1

2



2 INTRODUCTION

2. Introduction

2.1. The Hubbard model

Although it is rather easy to write down the full Hamiltonian for a many-body system
it is nearly impossible to solve it.
Firstly, one is confronted with a differential equation that contains a huge amount of
variables (∼ 1023) and many interactions that make even numerical attempts useless.
Secondly, even if it would be possible to solve this problem one will end up with a lot of
data that will not show any physical effect without arranging the vast set of solutions
in an appropriate manner.

Solid state theory has therefore developed a lot of techniques to tackle this problem
by defining new spaces, making use of elegant formalisms and projecting on models
that are more convenient.
A long established and famous model is the Hubbard model that was proposed by John
Hubbard in 1963 [3].
In the case of one orbital it can be written as

H = −
∑
<ij>σ

tij(c
†
iσcjσ + c†jσciσ) + U

∑
i

ni↑ni↓ − µ
∑
i

ni, (2.1)

where ciσ destroys an electron of spin σ at site i, c†iσ creates an electron of spin σ at site
i and niσ is the number operator. The brackets <,> signal that only nearest neighbors
have to be counted.
The Coulomb interaction U is constant and only taken into account for electrons on
the same site. Moreover, the kinetic energy is encoded in the hopping integrals tij and
the underlying lattice of ions is static. The first sum is carried out for a small number
of neighbors, e.g. next nearest and second nearest neighbors (Fig. 2.1).
The chemical potential µ is introduced as an Lagrange parameter to guarantee the right
filling.

Figure 2.1: An illustration of the Hubbard model for a square lattice where electrons
are depicted as red dots. The Coulomb interaction is reduced to a constant
on-site term U . The arrows show hopping elements t and t′ to the first
nearest neighbor and second nearest neighbor, respectively.

Even if this model has an appealing and simple form, no general solution was found
but for the one dimensional and the infinite dimensional case.
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2.2 Cuprates and organic charge transfer salts

Nevertheless many approaches have been proposed to find approximate solutions that
were proven to be good descriptions of real materials, e.g. Mott-Metal-Insulator tran-
sition in several strongly correlated systems.
The kinetic part is in general obtained by performing a Density Functional Theory
(DFT) calculation that provides a band structure. By using the projective Wannier
function method we determine the tight binding parameters that reflect the underlying
lattice geometry. In the simple case of a d-dimensional cube, where one can assume that
only next nearest neighbor hoppings are important, the calculation takes the following
form:

H
Fourier−→ −t

∑
<ij>

∑
~kσ,~k

(c†~kσ
c~k′σe

i(~k~ri−~k′~rj) + h.c.)

= −t
∑
ν=±1

d∑
l=1

∑
~kσ,~k′

c†~kσ
c~k′σ

∑
i

ei[
~k~ri−~k′~(ri+νa~el)]

= −t
∑
ν=±1

d∑
l=1

∑
~kσ,~k′

c†~kσ
c~k′σe

−i~k′νa~el
∑
i

ei(
~k−~k′)~ri

= −t
∑
ν=±1

d∑
l=1

∑
~kσ,~k′

c†~kσ
c~k′σe

−i~k′νa~elδ~k,~k′

= −t
d∑
l=1

∑
~kσ

c†~kσ
c~kσ cos(~ka~el)

=
∑
~kσ

[
−2t

d∑
l=1

cos(kl)

]
c†~kσ

c~kσ (2.2)

⇒ ε~k = −2t
d∑
l=1

cos(kl). (2.3)

Including hoppings to the second and third nearest neighbours (t′ and t
′′
) leads to

ε~k = −2t

d∑
l=1

cos(kl)− 4t′
d∏

m=1

cos(km)− 2t
′′

d∑
n=1

cos(2kn). (2.4)

This dispersion relation will serve as a starting point not only for many different kinds
of theories but also for TPSC.

2.2. Cuprates and organic charge transfer salts

Two groups of superconducting materials are supposed to be adaptable to the single-
orbital Hubbard model and therefore we are going to present them in this section.

Cuprates

A typical representative of the cuprates is YBa2Cu3O7 (see Fig.2.2) but all systems
have cuprate (CuO−2 )-layers in their unit cells in common that are divided by blocks of
molecules that serve as a charge reservoir. Effectively, one can describe the systems as

4



2 INTRODUCTION

quasi-2D where the blocks between the CuO2-planes change only the filling and have
no other influence.
Further approximations like the neglection of the oxygen 2px,y-orbitals and only taking
into account of the copper 3dx2−y2-orbitals, the reduction of the Coulomb interaction to
an on-site Hubbard interaction U and restricting the kinetic term to effective nearest-
neighbor hoppings t(, t′...) lead to a description of cuprates by the single-orbital Hub-
bard model. Naturally, this can be extended to a many-orbital Hubbard model where
one includes the effect of the oxygen 2px,y-orbitals [4].

c

a b

Figure 2.2: Unit cell of YBa2Cu3O7 where one finds Yttrium (grey) between two CuO2-
planes (red and blue). The remaining blocks above and below the planes
can be very different. In this case it is Barium (green) and CuO-chains that
serve as a charge reservoir.

Various experimental techniques like NMR, ARPES, resisitivity and susceptibility
measurements have clarified the phase diagram of cuprates and give a benchmark for
theoretical models (Fig. 2.3).

In this work we concentrate on the pseudogap and superconductivity and therefore
Fig. 2.3 shows only those two phases that are characterized by the crossover tempera-
ture Tx and the superconducting critical temperature Tc. Increasing antiferromagnetic
correlations within the pseudogap phase are expected to be important for the under-
standing of the superconducting dome below.

Organic charge transfer salts

At first glance, it seems impossible to model organic charge transfer salts by a simple
single-orbital Hubbard model because the unit cell consists of many complex structured
molecules (see Fig. 2.4). But measurements have shown that the anion-planes sepa-
rating the ET layers serve as insulating barriers and therefore one might approximate
the physics by only taking the conducting ET layers into account. Viewing along the
molecule axis of the ET molecules allows us to identify a very appealing structure since
we can summarize the molecules to dimers (red and blue ellipses in Fig. 2.4) that form
a triangular lattice.

Again one can reduce the Coulomb interaction to an on-site Hubbard interaction U

5



2.2 Cuprates and organic charge transfer salts

Figure 2.3: Segment of the phase diagram of various cuprate systems studied with dif-
ferent techniques by T. Nakano et al. (see key in [5]). The studied sys-
tems reveal a dome-like shape for the superconducting critical temperature
Tc that reaches its maximum value Tmaxc at some optimal filling n = n0.
Above the superconducting dome we find the pseudogap region that sets in
below Tx.

(a) (b)

Figure 2.4: (a) The unit cell of κ-(ET)2-Cu[N(CN)2]Br consists of conducting extended
ET layers and narrow Cu[N(CN)2]Br-blocks that allow electric current par-
allel to the ET layers. (b) Viewing along the long ET molecule axis gives a
structure that allows the regrouping of molecules into dimers (red and blue
ellipses). This model for the organic charge transfer salts is called dimer
model.

and confine the kinetic term to the nearest neighbors and find thus the single-orbital
Hubbard model. The same calculations as for the square lattice (see 2.4) lead to an
energy dispersion of the form

ε~k = −2t(cos(kx) + cos(ky))− 2t′cos(kx + ky). (2.5)

6



2 INTRODUCTION

In contrast to the cuprates the next step of improvement is the extension to a multi-site
model that takes care of the inner structure of each dimer. It has been shown that this
advanced model gives a different symmetry of the gap function and might therefore
also have an effect on the calculation of the critical temperature Tc [6].

The next part of this work will introduce Green’s functions and susceptibilities that
are crucial ingredients for the formalism that leads to TPSC.

7



3. Green’s functions and Susceptibilities

Green’s functions and susceptibilities are special types of correlation functions, so the
first step of this chapter is to introduce correlation functions. Afterwards it will be easy
to use these general results for those representatives. In the end, a connection between
Green’s functions and susceptibilities will be drawn.

3.1. Overview of Correlation functions

3.1.1. Motivation from experiments

Physics is founded on the grounds of experiments and the aim of theoretical physics is to
build a mathematical model that fits to the observations and gives a widely applicable
understanding of the involved mechanisms that allows further predictions.
Assuming that during an experiment the interaction between the system and the probe
can be described via a coupling constant g one can write the Hamiltonian

Hsystem−probe ≈ g(Osystem ⊗ 1probe)(1system ⊗Oprobe), (3.1)

where Osystem and Oprobe are some operators acting on the system and the probe,
respectively. This form of the Hamiltonian is indeed a very good model for a big range
of experimental techniques. In general, experimentalists measure not only one final
state of the probe but a continuum, so we have to make use of Fermi’s Golden rule

pi→f = 2π|〈f |Hsystem−probe|i〉|2δ(Ef − Ei − ω), (3.2)

which tells us that the transition probability pi→f from some initial state i to a fi-
nal state f is given by the squared absolute value of the transition matrix element
〈f |Hsystem−probe|i〉. In addition, the δ-function δ(Ef − Ei − ω) guarantees that the
energy difference between the initial and the final state Ef − Ei is compensated by
the energy change of the probe ω, i.e. energy conservation. During an experiment one
detects the changes in the probe and performs no measurements of the system directly.
Therefore, to get the transition probability for the probe it is necessary to sum over all
possible final states (selection rules are included in the matrix elements).
In order to do calculations at finite temperatures one has to perform the thermal aver-
age over all initial states of the system. Using the form of the Hamiltonian (Eq. 3.1)
one gets the transition probability

P =
∑

fsystem

pi→f

= 2πg2|〈iprobe|Oprobe|fprobe〉|2
∑

fsystem

|〈isystem|Osystem|fsystem〉|2δ(Ef − Ei − ω)

= g2|〈iprobe|Oprobe|fprobe〉|2
∑

fsystem

|〈isystem|Osystem|fsystem〉|2
∫ ∞
−∞

dte−i(Ef−Ei−ω)t

= g2|〈iprobe|Oprobe|fprobe〉|2
∫ ∞
−∞

dteiωt×

×
∑

fsystem

〈isystem|eiHsystemtOsysteme−iHsystemt|fsystem〉〈fsystem|Osystem|isystem〉

= g2|〈iprobe|Oprobe|fprobe〉|2
∫ ∞
−∞

dteiωt〈isystem|Osystem(t)Osystem|isystem〉

8



3 GREEN’S FUNCTIONS AND SUSCEPTIBILITIES

thermal avg.−→ g2|〈iprobe|Oprobe|fprobe〉|2
∫ ∞
−∞

dteiωt〈Osystem(t)Osystem〉, (3.3)

where 〈·〉 denotes the ensemble average as mentioned in section 1.
This last equation can be decoupled in two parts:
The first part contains information about the probe that is usually easy to evaluate,
e.g. free electrons, electro-magnetic waves etc.
In the second part one is confronted with a Fourier transform of an object that is called

correlation function

〈O(x)O′(y)〉. (3.4)

x and y summarize all kinds of variables whereupon the arbitrary operators O and
O′ depend.

To summarize: In a large range of experiments correlation functions play a key role
to interpret experimental data or model certain physical effects.

3.1.2. Susceptibilities and Linear-Response Theory

In many cases of models one can decompose the full Hamiltonian Hfull(t) into a sum

Hfull(t) = H0 +H1(t), (3.5)

where H0 might be related to the unperturbed system and H1(t) to a perturbation
generated by a probe orH0 is the kinetic part of a Hamiltonian andH1(t) the interacting
part. Recalling the form of interactions between system and probe (Eq. 3.1) one can
reformulate the perturbation

H1(t) =

∫
d3r Osystem(~r, t)φ(~r, t) (3.6)

and sum up the effects of the probe to an effective field φ(~r, t).
These are the foundations of Linear-Response theory and the rest will be mere algebra
and first order perturbation theory that leads to the definition of susceptibilities.

The central question is how does the expectation value 〈A(~r, t)〉 of an observable
A(~r) evolve if the system is at some initial time t0 in thermal equilibrium and evolves
afterwards under the given perturbation. In the Dirac interaction picture this reads

〈A(~r, t)〉 = 〈U †I (t, t0)AH(~r, t)UI(t, t0)〉 (3.7)

AH(~r, t) = eiH0tA(~r)e−iH0t, (3.8)

while AH(~r, t) is the time-evolved operator without the perturbation. In order to take
into account that the perturbation is only weak, one neglects higher order contributions
from φ(~r, t), i.e. one takes the functional derivative at φ = 0,

δ〈A(~r, t)〉
δφ(~r′, t′)

∣∣∣∣
φ=0

=

〈[
1 + i

∫ t

t0

dt′
∫
d3r′Osystem(~r′, t′)φ(~r′, t′) +O((H1)2)

]
AH(~r, t)×

×
[
1− i

∫ t

t0

dt′
∫
d3r′Osystem(~r′, t′)φ(~r′, t′) +O((H1)2)

]〉 /
/
δφ(~r′, t′)

∣∣∣
φ=0

9



3.1 Overview of Correlation functions

= i〈[Osystem(~r′, t′), AH(~r, t)]〉. (3.9)

In general, one is interested in causality and the change of the expectation value can
only occur after the perturbation, so we insert Θ(t− t′) to assure this.
This leads to the definition of the

retarded susceptibility

χROsystemA(~r, t;~r′, t′) ≡ i〈[Osystem(~r′, t′), AH(~r, t)]〉Θ(t− t′). (3.10)

The change in the expectation value of an observable is therefore described by the
susceptibility if one can assume that the perturbation is weak and it is allowed to treat
it within first order perturbation theory.

3.1.3. Definition of the single-particle Green’s function

From the electrodynamics course one might remember that Green’s functions have been
introduced as solutions of the Poisson equation with boundary conditions.
Due to the fact that the general Schrödinger equation is a linear partial differential
equation one should not be surprised to find it also in solid state physics.

Starting point of this chapter is a general Hamiltonian H and two states Ψ0(~r, t) and
Ψ(~r, t) where the second state is obtained by time-evolution of the first, i.e.

Ψ(~r, t) =

∫
d3r′〈~r|e−iH(t−t′)|~r′〉Ψ0(~r′, t′). (3.11)

Since we have chosen Ψ0 to be the initial state one is obliged to put Θ(t−t′) to preserve
causality,

Ψ(~r, t)Θ(t− t′) =

∫
d3r′〈~r|e−iH(t−t′)|~r′〉Ψ0(~r′, t′)Θ(t− t′)

≡ i
∫
d3r′GRs (~r, t;~r′, t′)Ψ0(~r′, t′), (3.12)

where we have used the definition of the

one-body retarded Green’s function

GRs (~r, t;~r′, t′) ≡ −i〈~r|e−iH(t−t′)|~r′〉Θ(t− t′). (3.13)

Later, we will see that these functions are all we need for calculations and it is the first
step away from wave functions and towards Feynman diagrams.

So far, this is the definition for single-particle problems but how do we deal with
many-body systems?
One might be tempted to translate the definition the one-body retarded Green’s func-
tion (Def. 3.13) to many-body systems by taking the average over the ground-state |0〉
and work with creation Ψ†(~r) and annihilation operators Ψ(~r) that create and destroy
at electrons at position ~r, respectively:

−i〈~r|e−iH(t−t′)|~r′〉Θ(t− t′) = −i〈0|Ψ(~r)e−iHteiHt
′
Ψ†(~r′)|0〉Θ(t− t′) |H|0〉 = 0|0〉

= −i〈0|eiHtΨ(~r)e−iHteiHt
′
Ψ†(~r′)e−iHt

′ |0〉Θ(t− t′)
= −i〈0|Ψ(~r, t)Ψ†(~r′, t′)|0〉Θ(t− t′)

10



3 GREEN’S FUNCTIONS AND SUSCEPTIBILITIES

T>0−→ −i〈Ψ(~r, t)Ψ†(~r′, t′)〉Θ(t− t′). (3.14)

This first attempt shows two important disadvantages:
1) The condition

lim
t→t′+0

GR(~r, t;~r′, t′) ∼ δ(~r − ~r′) (3.15)

reflecting that a particle does not change its position when the regarded time scale goes
to zero will in general not be satisfied since the ground-state is a linear combination of
product-states (namely Slater determinants).
2) The propagation of holes is not explicitly taken into account.
The least invasive change of the last equation would be the following:

−i〈{Ψ(~r, t),Ψ†(~r′, t′)}〉Θ(t− t′) (3.16)

and indeed it obviously mends 2) and a few lines show also the improvement concerning
1):

lim
t→t′+0

[
−i〈{Ψ(~r, t),Ψ†(~r′, t′)}〉Θ(t− t′)

]
= lim
t→t′+0

[
−i〈Ψ(~r, t)Ψ†(~r′, t′)

+Ψ†(~r′, t′)Ψ(~r, t)〉
]

= lim
t→t′+0

[
−i〈Ψ(~r, t)Ψ†(~r′, t′)

+δ(~r − ~r′)−Ψ(~r, t)Ψ†(~r′, t′)〉
]

=− iδ(~r − ~r′). (3.17)

Hence, the final definition of the single-particle Green’s function of a many-body state
is

GR(~r, t;~r′, t′) ≡ −i〈{Ψ(~r, t),Ψ†(~r′, t′)}〉Θ(t− t′). (3.18)

In this form we can recognize that we are dealing with a correlation function. It is the
correlation of the state Ψ with itself at different times and positions.
Before we continue with Green’s functions (Sec. 3.3) we will show basic properties of
correlation functions that will be needed later.
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3.2. Properties of correlation functions

3.2.1. Time translational invariance

Assuming that the system is initially prepared in a thermal equilibrium state one can
conclude that an arbitrary correlation function C(~r, t;~r′, t′) exhibits time translational
invariance,

C(~r, t;~r′, t′) ≡ 〈O(~r, t)O′(~r′, t′)〉 = C(~r, ~r′; t− t′). (3.19)

Proof:
Starting from a thermal equilibrium means that we can take the thermal average as
usual:

C(~r, t;~r′, t′) =
tr
[
e−βHeiHtO(~r)e−iHteiHt

′
O(~r′)e−iHt

′
]

tr(e−βH)

=
tr
[
e−βHeiH(t−t′)O(~r)e−iH(t−t′)O(~r′)

]
tr(e−βH)

=
tr
[
e−βHO(~r, t− t′)O(~r′)

]
tr(e−βH)

= C(~r, ~r′; t− t′). (3.20)

�

3.2.2. Space translational invariance

The definition of space translational invariance is the following:

[T~R, H] = 0, (3.21)

where T~R is the space translation operator that moves a state by some vector ~R ∈ S,
S is a set of lattice vectors and H is the Hamiltonian of the system. From this we also
know

[T~R, e
−βH ] = 0 (3.22)

and therefore

C(~r, t;~r′, t′) = tr
[
e−βHO(~r, t)O′(~r′, t′)

]
/tr(e−βH)

= tr
[
e−βHT~RT−~RO(~r, t)T~RT−~RO

′(~r′, t′)
]
/tr(e−βH)

= tr
[
e−βHT−~RO(~r, t)T~RT−~RO

′(~r′, t′)T~R

]
/tr(e−βH)

= tr
[
e−βHO(~r + ~R, t)O′(~r′ + ~R, t′)

]
/tr(e−βH)

= C(~r + ~R, t;~r′ + ~R, t′). (3.23)

Starting from a translational invariant system one can calculate

C(~r, t;~r′, t′) = 〈O(~r, t)O′(~r′, t′)〉

12



3 GREEN’S FUNCTIONS AND SUSCEPTIBILITIES

=
1

V

〈∑
~k′~k

O~k(t)e
i(~k~r+~k′~r′)O′~k′(t

′)

〉

=
1

V

〈∑
~k′~k

O~k(t)e
i
[
(~k+~k′)~r

′+~r
2

+
~k−~k′

2
(~r−~r′)

]
O′~k′(t

′)

〉
. (3.24)

So far, nothing special happened but now one uses the translational invariance (Eq.
3.23), i.e.

1

V

∫
V
d

(
~r′ + ~r

2

)[
C(~r, t;~r′, t′)

]
=

1

V

∫
V
d

(
~r′ + ~r

2

)[
C(~r + ~R, t;~r′ + ~R, t′)

]
(3.25)

and therefore the integral does not depend on the integrand and gives just 1.

1 · C(~r, t;~r′, t′) = 1 · 1

N~k

〈∑
~k′~k

O~k(t)e
i
[
(~k+~k′)~r

′+~r
2

+
~k−~k′

2
(~r−~r′)

]
O′~k′(t

′)

〉

=
1

N~k

〈∑
~k′~k

O~k(t)
1

V

∫
V
d

(
~r′ + ~r

2

)(
ei(
~k+~k′)~r

′+~r
2

)
ei
~k−~k′

2
(~r−~r′)O′~k′(t

′)

〉

=
1

N~k

〈∑
~k′~k

O~k(t)δ~k,−~k′e
i
~k−~k′

2
(~r−~r′)O′~k′(t

′)

〉

=
1

N~k

〈∑
~k

O~k(t)e
i~k(~r−~r′)O′−~k(t

′)

〉
= C(~r − ~r′; t, t′). (3.26)

Note:
In the case where one of the operators is a hermitian conjugate the −~k becomes a ~k as
follows from the Fourier transformation.
This is the case for Green’s functions and in the following we will use the Fourier
transform that follows from Eq. 3.26.
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3.3. Single-particle Green’s function

3.3.1. Spectral weight

The first application of the single-particle Green’s function (Def. 3.18) is the calculation
of the spectral weight.
To do this it is helpful to perform a Fourier transform to move from time to frequency
space,

GR(~r, ~r′;ω) =

∫ ∞
−∞

d(t− t′)eiω(t−t′)GR(~r, ~r′; t− t′)

= −i lim
η→0+

∫ ∞
0

d(t− t′)eiω(t−t′)〈{Ψ(~r, t− t′),Ψ†(~r′)}〉e−η(t−t′). (3.27)

We manipulate now the anti-commutator in the last expression by using a complete
set of eigenvectors {|n〉} properly taking into account the creation and annihilation
operators:

〈{Ψ(~r, t− t′),Ψ†(~r′)}〉

=
∑
m,n

[
〈n|e−βHeiH(t−t′)Ψ(~r)e−iH(t−t′)|m〉〈m|Ψ†(~r′)|n〉

+ 〈n|e−βHΨ†(~r′)|m〉〈m|eiH(t−t′)Ψ(~r)e−iH(t−t′)|n〉
]/

tr(e−βH)

=
∑
m,n

[
e−β(En−µNn)

(
e−i(t−t

′)(Em−(Nn+1)µ−(En−Nnµ))〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉

+ e−i(t−t
′)(En−Nnµ−(Em−(Nn−1)µ))〈n|Ψ†(~r′)|m〉〈m|Ψ(~r)|n〉

)]/
tr(e−βH). (3.28)

where Nn is the number of particles in the state |n〉.
Having separated the (t− t′)-dependency it is now easy to perform the integral and we
get therefore

GR(~r, ~r′;ω) = lim
η→0+

∑
m,n

[
e−β(En−µNn)

(
1

ω + iη − (Em − En − µ)
〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉

+
1

ω + iη − (En − Em − µ)
〈n|Ψ†(~r′)|m〉〈m|Ψ(~r)|n〉

)]/
/
tr(e−βH). (3.29)

Changing in the second line the summation indices m↔ n we get

GR(~r, ~r′;ω) = lim
η→0+

∑
m,n

(
e−β(En−µNn) + e−β(Em−µNm)

)
×

×
(
〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉
ω + iη − (Em − En − µ)

)/
tr(e−βH). (3.30)

Let us now have a look at the imaginary part of the retarded Green’s function 3.30

Im(GR(~r, ~r′;ω)) = lim
η→0+

∑
m,n

(
e−β(En−µNn) + e−β(Em−µNm)

)
×

14
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×
(
− η〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉

(ω − (Em − En − µ))2 + η2

)/
tr(e−βH) (3.31)

Remembering the identity

1

π
lim
η→0+

η

x2 + η2
= δ(x) (3.32)

leads to

Im(GR(~r, ~r′;ω)) = −π
∑
m,n

(
e−β(En−µNn) + e−β(Em−µNm)

)
〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉×

× (δ(ω − (Em − En − µ)))
/
tr(e−βH) (3.33)

Due to the δ-function and the matrix elements one knows that

Nm = Nn + 1

ω = Em − En − µ (3.34)

and therefore

Im(GR(~r, ~r′;ω)) = −π
∑
m,n

(1 + e−βω)e−β(En−µNn)〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉×

× (δ(ω − (Em − En − µ)))
/
tr(e−βH). (3.35)

From this one can now define the

spectral weight

A(~r, ~r′, ω) ≡
∑
m,n

(1 + e−βω)e−β(En−µNn)〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉×

× 2πδ(ω − (Em − En − µ))
/
tr(e−βH)

= −2Im(GR(~r, ~r′, ω)). (3.36)

The interpretation of the spectral weight A(~r, ~r′, ω) is that the first addend describes
excitations with one more particle and the second addend with one more hole.
Those excitations provide an energy ω that can be positive, negative or zero depending
on whether the excitation energy Em − En is bigger, smaller or equal to the chemical
potential µ. The weight of this excitation is the overlap matrix elements between the
initial state and the excited one.
To relate the spectral weight A(~r, ~r′, t) with the retarded Green’s function GR(~r, ~r′, t)
one has only to perform a Fourier transformation,

A(~r, ~r′, t) =

∫ ∞
−∞

dω

2π
e−iωtA(~r, ~r′, ω)

=
∑
m,n

e−i(Em−En−µ)t
[
e−β(En−µNn) + e−β(Em−µNm)

]
〈n|Ψ(~r)|m〉〈m|Ψ†(~r′)|n〉

/
/
tr(e−βH)
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=
∑
m,n

[
e−β(En−µNn) + e−β(Em−µNm)

]
〈n|eiHtΨ(~r)e−iHt|m〉〈m|Ψ†(~r′)|n〉

/
/
tr(e−βH)

=
∑
n

〈n|e−β(En−µNn){Ψ(~r, t),Ψ†(~r′)}|n〉
/
tr(e−βH)

=〈{Ψ(~r, t),Ψ†(~r′)}〉. (3.37)

Another useful relation is the following which can be obtained by performing a Fourier
transformation twice,

GR(~r, ~r′, ω) =

∫ ∞
−∞

dteiωtGR(~r, ~r′, t)

= −i
∫ ∞

0
dtei(ω+iη)tA(~r, ~r′, t)

= −i
∫ ∞

0
dtei(ω+iη)t

∫ ∞
−∞

dω′

2π
e−iω

′tA(~r, ~r′, ω′)

= −i
∫ ∞
−∞

dω′

2π
A(~r, ~r′, ω′)

∫ ∞
0

dtei(ω+iη−ω′)t

=

∫ ∞
−∞

dω′

2π

A(~r, ~r′, ω′)

ω + iη − ω′
. (3.38)

Let us assume space translational invariance and evaluate∫ ∞
−∞

dω

2π
A(~k, ω) =

∑
m,n

(
e−β(En−µNn) + e−β(Em−µNm)

)
〈n|c~k|m〉〈m|c

†
~k
|n〉
/
tr(e−βH)

=
∑
n

e−β(En−µNn)〈n|c~kc
†
~k
|n〉
/
tr(e−βH)

+
∑
m

e−β(Em−µNm)〈m|c†~kc~k|m〉
/
tr(e−βH)

= 〈{c~k, c
†
~k
}〉

= 1. (3.39)

This result allows us to interpret the spectral weight A(~k, ω) as a probability that
excitations described above are true eigenstates of the many-body system.

3.3.2. Non-interacting Green’s function

Later, it will be shown that the full Green’s function can be expanded in terms of the
non-interacting Green’s function G0(~k, ω) and therefore it will be useful to consider the
calculation of the non-interacting Green’s function in momentum space.
Starting from the Hamiltonian (Eq. 2.1) and transforming to momentum space (Eq.
2.4) one uses space translational invariance,

GR(~k, t) = −i
〈{
c~k(t), c

†
~k

}〉
Θ(t)

= −ie−iξ~kt × 1×Θ(t) (3.40)
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3 GREEN’S FUNCTIONS AND SUSCEPTIBILITIES

(a) (b)

Figure 3.1: (a) The normalized spectral weight A(ω) is symmetric due to particle-hole
symmetry and half-filling. It drops at |ω| > 4t which is the bandwidth as
expected. The singularity at ω/t = 0,±4 comes from a flat (b) dispersion

ξ~k/t since
∫
d2k ∼

∫ dξ~k
|∇ξ~k|

and the number of contributing points is maximal

for ω = 0.

GR(~k, ω) = −i lim
η→0+

∫ ∞
0

dtei(ω+iη)te−iξ~kt

= lim
η→0+

1

ω + iη − ξ~k
. (3.41)

From this we can also calculate the spectral weight (Def. 3.36) analytically for nearest
neighbors hopping at half-filling, i.e. µ = 0:

A(~k, ω) = −2 lim
η→0+

Im

(
1

ω + iη − ξ~k

)
= lim

η→0+

−1

i

(
1

ω + iη − ξ~k
− 1

ω − iη − ξ~k

)
= 2 lim

η→0+

η

(ω − ξ~k)2 + η2

= 2πδ(ω − ξ~k). (3.42)

Processing an integration in 2D over the whole Brillouin zone one gets the well-known
spectral function A(ω) - after normalizing (Eq. 3.39) -

1

2π
A(ω) =

1

2π2t

∫ π/2

0

dφ√
1−

[
1−

(
ω
4t

)2]
sin2 φ

, (3.43)

that is shown in 3.1 and exhibits the typical divergence at ω = 0 and drops to zero at
|ω| = 4t.

3.4. Matsubara Green’s function

To calculate expectation values in thermodynamic equilibrium perturbatively one has to
evaluate the time-ordered products that appear in the time-evolution operator working
in the interaction representation.
It turns out that a generalization of the Green’s function to the complex time axis can
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be related to the retarded Green’s function and - that is the most important issue - is
computationally more appealing, i.e. the complex time τ is defined as

τ ≡ it. (3.44)

3.4.1. Definition

The Matsubara Green’s function is defined by:

G(~r, ~r′; τ − τ ′) ≡ −〈TτΨ(~r, τ)Ψ†(~r′, τ ′)〉
≡ −〈Ψ(~r, τ)Ψ†(~r′, τ ′)〉Θ(τ − τ ′) + 〈Ψ†(~r′, τ ′)Ψ(~r, τ)〉Θ(τ ′ − τ). (3.45)

The second equation defines the time-ordering operator (for fermions) where the com-
mutation of the fermionic creation and annihilation operators induces a minus sign.
Otherwise, the time-ordering operator only arranges the operators in a decreasing or-
der of time starting from left.

3.4.2. Anti-periodicity and Fourier expansion

In this section we see how it is possible to map the information of continuous imaginary
time τ to discrete Matsubara frequencies ikn.
Suppose τ < 0 (shifting τ ′ to 0),

G(~r, ~r′; τ) = 〈TτΨ†(~r′, 0)Ψ(~r, τ))〉

=
tr
[
e−βKΨ†(~r′)

(
eKτΨ(~r)e−Kτ

)]
tr(e−βK)

=
tr
[(
eKτΨ(~r)e−Kτ

)
e−βKΨ†(~r′)

]
tr(e−βK)

=
tr
[(
e−βKeβK

) (
eKτΨ(~r)e−Kτ

)
e−βKΨ†(~r′)

]
tr(e−βK)

= 〈TτΨ(~r, τ + β)Ψ†(~r′, 0)〉
= −G(~r, ~r′; τ + β). (3.46)

The same argumentation for τ > 0 leads to

G(~r, ~r′; τ) = −G(~r, ~r′; τ − β). (3.47)

This anti-periodicity tells us that all necessary information about the Matsubara Green’s
function is already present in the interval [−β, β].
Using this anti-periodicity we can expand the Matsubara Green’s function G(~r, ~r′; τ)
in a Fourier series,

G(~r, ~r′; τ) =
1

β

∞∑
n=−∞

e−iknτG(~r, ~r′; ikn) (3.48)

kn =
(2n+ 1)π

β
(3.49)

G(~r, ~r′; ikn) =

∫ β

0
dτeiknτG(~r, ~r′; τ). (3.50)
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As an important example we will demonstrate the calculation of the non-interacting
Matsubara Green’s function G0(~k, ikn). The first step is calculating c~k(τ) from the
Heisenberg equation of motion dropping the explicit imaginary time dependence for
clarity,

∂

∂τ
c~k = [H0, c~k]

=
∑
~k′

ξ~k′ [c
†
~k′
c~k′ , c~k]

=
∑
~k′

ξ~k′c
†
~k′
{c~k′ , c~k} − {c

†
~k′
, c~k}c~k′

=
∑
~k′

ξ~k′c
†
~k′
· 0− δ~k~k′c~k′

= −ξ~kc~k. (3.51)

Regarding the initial condition in the Heisenberg picture, i.e. c~k(0) = c~k we obtain

c~k(τ) = e−ξ~kτ c~k. (3.52)

By repeating the same steps as for the derivation of the translation invariance (Eq.
3.26) (Note that there is no minus sign because the second operator in the Matsubara
Green’s function (Def. 3.45) is hermitian conjugated):

G(~k; τ) = −〈Tτ c~k(τ)c†~k
〉 (3.53)

G0(~k; τ) = −e−ξ~kτ [〈c~kc
†
~k
〉Θ(τ)− 〈c†~kc~k〉Θ(−τ)]

= −e−ξ~kτ [(1− f(ξ~k))Θ(τ)− f(ξ~k)Θ(−τ)]. (3.54)

Taking the Fourier transform to Matsubara frequencies leads to

G0(~k; ikn) =

∫ β

0
dτeiknτG0(~k; τ)

= −(1− f(ξ~k))

∫ β

0
dτe(ikn−ξ~k)τ

=
1

ikn − ξ~k
. (3.55)

From the Matsubara Green’s function in momentum space G(~k, τ) we already see that

lim
τ→0−

G(~k, τ) = 〈c†~kc~k〉 (3.56)

and in the special case of non-interacting systems

lim
τ→0−

G0(~k, τ) = 〈c†~kc~k〉 = f(ξ~k). (3.57)

The same result must be obtained if the calculus is carried out for the Fourier trans-
formed (Eq. 3.55), i.e.

lim
τ→0−

∑
n

eiknτG(~k, ikn) = 〈c†~kc~k〉 (3.58)
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Figure 3.2: Qualitative form of an arbitrary Matsubara Green’s function G(~k, ikn) for a
given ~k. The red line shows the real part that is symmetric under n→ −n−1
and the imaginary part (green line) that exhibits antisymmetry.

lim
τ→0−

∑
n

eiknτ

ikn − ξ~k
= f(ξ~k). (3.59)

In practical (numerical) calculations one has to sum over Matsubara frequencies which
is discussed in appendix A.
However, the symmetry of the Matsubara Green’s functions G0(~k, ikn) and G(~k, ikn)
that follows directly from the definition of the Matsubara frequencies kn is shown in
Fig. 3.2:

G0(~k, ikn) = G∗0(~k, ik−n−1). (3.60)

3.4.3. Relation between the retarded Green’s function GR and the Matsubara
Green’s function G

We will now find the relationship between the retarded Green’s function GR(~r, ~r′; t)
and the Matsubara Green’s function G(~r, ~r′; τ) where we will use τ > 0,

G(~r, ~r′; ikn) =

∫ β

0
dτeiknτG(~r, ~r′; τ) |3.45

=

∫ β

0
dτeiknτ [−〈Ψ(~r, τ)Ψ†(~r′, 0)〉Θ(τ) + 〈Ψ†(~r′, 0)Ψ(~r, τ)〉Θ(−τ)]

=

∫ β

0
dτeiknτ [−〈Ψ(~r, τ)Ψ†(~r′, 0)〉]. (3.61)
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The integration
∫
dτ is merely along the imaginary axis since τ = it!

We will assume that kn > 0 (otherwise we do the following steps in the mirrored plane).
Since G(~r, ~r′; τ) is analytic in the whole semi-plane Im(τ) ∈ (0, β) the integration can
be performed over an arbitrary path as long as the end points are fixed (follows from
the residual theorem). We will choose the path in the complex plane (Re(z), Im(z)):

(0, 0)
1→ (∞, 0)

2→ (∞, β)
3→ (0, β).

path 1 =

∫ t=∞

t=0
d(it)eiknit[−〈eiKtΨ(~r)e−iKtΨ†(~r′)〉] (3.62)

path 2 =

∫ τ=∞

τ=0
dτe−∞[−〈eKτΨ(~r)e−KτΨ†(~r′)〉]

= 0 (3.63)

path 3 =

∫ t=0

t=∞
d(it)eikni(t−β)[−〈eiK(t−iβ)Ψ(~r)e−iK(t−iβ)Ψ†(~r′)〉]. (3.64)

Putting all paths together and using the definition of the fermionic Matsubara frequen-
cies (Def. 3.49), i.e. eiknβ = −1 , one gets

G(~r, ~r′; ikn) =

∫ t=∞

t=0
d(it)eiknit[−〈eiKtΨ(~r)e−iKtΨ†(~r′)〉]

+

∫ t=∞

t=0
d(it)eiknit[−〈eKβeiKtΨ(~r)e−iKte−βKΨ†(~r′)〉]

=

∫ t=∞

t=0
d(it)eiknit[−〈Ψ(~r, t)Ψ†(~r′, 0)〉]

+

∫ t=∞

t=0
d(it)eiknit

[
− tr(e

−KβeKβeiKtΨ(~r)e−iKte−βKΨ†(~r′))

tr(e−βK)

]
=

∫ t=∞

t=0
d(it)eiknit[−〈Ψ(~r, t)Ψ†(~r′, 0)〉]

+

∫ t=∞

t=0
d(it)eiknit

[
− tr(e

−KβΨ†(~r′)eiKtΨ(~r)e−iKt)

tr(e−βK)

]
=

∫ t=∞

t=0
d(it)eiknit[−〈Ψ(~r, t)Ψ†(~r′, 0)〉]

+

∫ t=∞

t=0
d(it)eiknit

[
− tr(e

−KβΨ†(~r′, 0)Ψ(~r, t))

tr(e−βK)

]
=

∫ t=∞

t=0
d(it)eiknit[−〈Ψ(~r, t)Ψ†(~r′, 0) + Ψ†(~r′, 0)Ψ(~r, t)〉]

= −i
∫ ∞

0
dteiknit〈{Ψ(~r, t),Ψ†(~r′, 0)}〉 |3.38

=

∫ ∞
−∞

dω′

2π

A(~r, ~r′;ω′)

ikn − ω′
. (3.65)

Comparing with the expression for the retarded Green’s function (Eq. 3.38) we see
that an analytic continuation can be performed by ikn → ω + iη where η ≶ 0 since
kn ≶ 0 was assumed.

GR(~r, ~r′;ω) = lim
ikn→ω+iη

G(~r, ~r′; ikn). (3.66)
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3.4 Matsubara Green’s function

3.4.4. Analytical continuation

The problem of finding an analytic continuationGR(~r, ~r′;ω) from the Matsubara Green’s
function on discrete pointS G(~r, ~r′; ikn) consists in having various possible solutions.
Baym and Mermin [7] were able to show that a well-defined analytic continuation exists
if one considers the high frequency limits. The resulting analytic continuation is

GR(~r, ~r′;ω) = lim
ikn→ω+iη

G(~r, ~r′; ikn). (3.67)

Even if this expression seems very easy it is numerically very hard to process.
Approximate methods like the Padé approximation [8],[9], the Maximum Entropy

Method [10], the Stochastic analytic continuation [11] and many others try to tackle
this problem.
In this work, we use the Padé approximation or the Stochastic analytic continuation
depending on the quality of the output since both have sometimes unnegligable disad-
vantages.

Padé approximation
Starting point of the Padé approximation for analytic continuation is the representation
of a complex function f : D → D′, where D and D′ are domains in C, as a continued
fraction

f(z) =
a1

1 + a2(z−z1)
1+···

, (3.68)

where ai, zi ∈ C ∀i ∈ [1,∞) and the approximation consists of determining an approx-
imate function f̃ where one determines a1, · · · , aN , N ∈ N, by enforcing f̃(zi) = ui,
∀i ∈ [1, · · · , N ], for a given set of points ui at zi, i.e.

f(z) ≈ f̃(z) =
a1

1 + a2(z−z1)
1+···aN (z−zN−1)

. (3.69)

As one can already imagine, this procedure is limited by the convergence of the series
and the number of sampling points.

Stochastic analytic continuation
Different to the Padé approximation one starts the other way round with a physical
spectral weight on the real axis that is correctly normalized and strictly positive. To get
the corresponding complex function on the imaginary axis one has to perform a Hilbert
transformation. The agreement with the input data is then checked by the squared
deviation between both functions at the given points. This procedure is then repeated
where the generated spectra on the real axis are treated by a Monte-Carlo approach
and the spectra get finally averaged if the fit is good but not perfect. Excluding perfect
fits is due to small numerical errors that might lead to unphysical features.

A small example for both kinds of analytic continuations is given in Fig. 3.3 where the
spectral weight A(ω) (Eq. 3.43) from the ~k-averaged non-interacting Green’s function
GR0 (ω) (Eq. 3.41) are compared.
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Figure 3.3: (a) The exact normalized spectral weight A(ω) that was calculated analyt-
ically in Eq. 3.43. In (b) we show the solution of the Padé approximation
that is not able to reproduce the divergencies at ω/t = 0,±4 due to the
polynomial expansion and has a small dip at ω/t ≈ 0.5 which is a typi-
cal error of the Padé approximation. The Stochastic analytic continuation
shows important deficiencies due to the divergencies but preserves the re-
flection symmetry more accurately. Moreover, it shows the usual noise from
the Monte Carlo simulation.

3.5. Interacting Green’s function and self-energy

3.5.1. The functional derivative formalism

In 1959, P. C. Martin and J. Schwinger [12] presented a formalism that introduces
artificial source fields to calculate correlation functions from functionals of these fields.
Firstly, we define our source field φ in the following way

φ(1, 2) ≡ φσ,σ′(~r, τ ;~r′, τ ′) (3.70)

since we want to couple Ψ†(1) and Ψ(2) to calculate the Matsubara Green’s function
Gφ that will depend on the source field.
The generating function is simply the partition function

Z[φ] ≡
〈
Tτe
−Ψ†(1̄)φ(1̄,2̄)Ψ(2̄)

〉
= tr

[
e−βHTτe

−Ψ†(1̄)φ(1̄,2̄)Ψ(2̄)
]

≡ tr
[
e−βHTτS[φ]

]
. (3.71)

Now, we can calculate Gφ by the following functional derivative

−δ lnZ[φ]

δφ(2, 1)
= − 1

Z[φ]
tr

[
e−βHTτe

−Ψ†(1̄)φ(1̄,2̄)Ψ(2̄) δ

δφ(2, 1)

(
−Ψ†(1̄)φ(1̄, 2̄)Ψ(2̄)

)]
= − 1

Z[φ]
tr
[
e−βHTτe

−Ψ†(1̄)φ(1̄,2̄)Ψ(2̄)
(
−Ψ†(1̄)δ(1̄− 2)Ψ(2̄)δ(2̄− 1)

)]
= − 1

Z[φ]
tr
[
e−βHTτe

−Ψ†(1̄)φ(1̄,2̄)Ψ(2̄)
(
−Ψ†(2)Ψ(1)

)]
= − 1

Z[φ]
tr
[
e−βHTτe

−Ψ†(1̄)φ(1̄,2̄)Ψ(2̄)Ψ(1)Ψ†(2)
]
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3.5 Interacting Green’s function and self-energy

= −
〈
TτS[φ]Ψ(1)Ψ†(2)

〉
〈TτS[φ]〉

≡ −
〈
TτΨ(1)Ψ†(2)

〉
φ

≡ G(1, 2)φ. (3.72)

In the limit φ → 0 one recovers the previous Matsubara Green’s function (Def. 3.45)
since e0 = I. At this point, we will derive a compute order derivative that will be
needed later,

δG(1, 2)φ
δφ(3, 4)

=
〈TτS[φ]Ψ(1)Ψ†(2)Ψ†(3)Ψ(4)〉

〈TτS[φ]〉
− 〈TτS[φ]Ψ(1)Ψ†(2)〉〈TτS[φ]Ψ†(3)Ψ(4)〉

〈TτS[φ]〉2

= 〈TτΨ(1)Ψ†(2)Ψ†(3)Ψ(4)〉φ +G(1, 2)φG(4, 3)φ. (3.73)

The next step is evaluating the equation of motion for the generalized Green’s func-
tion Gφ.
At this point the form of the Hamiltonian plays a key role and we will use the Hubbard
model from Eq. 2.1 where we sum over all i, j. Later, one can put the matrix elements
tij to zero that do not connect neighboring sites.
To do this, one has to calculate the following terms that will appear later:

∂ck,σ(τ)

∂τ
= [H, ck,σ]

=
∑
ij,σ′

[
tijc
†
i,σ′cj,σ′ , ck,σ

]
+ U

∑
i

[
c†i,↑ci,↑c

†
i,↓ci,↓, ck,σ

]
− µ

∑
i

[ni, ck,σ] . (3.74)

Using

[AB,C] = A{B,C} −B{A,C} (3.75)

[AB,C] = [A,C]B +A[B,C] (3.76)

one can continue

∂ck,σ(τ)

∂τ
=
∑
ij,σ′

tij

(
c†i,σ′{cj,σ′ , ck,σ} − cj,σ′{c

†
i,σ′ , ck,σ}

)
+ U

∑
i

([ni,↑, ck,σ]ni,↓ + ni,↑[ni,↓, ck,σ])

+ µ ck,σ

= −
∑
j

tkjcjσ − Uckσδσ,↑nk,↓ − Unk↑ckσδσ,↓ + µ ck,σ

= −
∑
j

tkjcjσ − Unk,−σckσ + µ ck,σ (3.77)

and finally calculate from Eq. 3.72

∂G(1, 2)

∂τ1
=
∑
j

t1jG(~rj − ~r2; τ1 − τ2)φ + U
〈
Tτ c
†
−σ(1+)c−σ(1)cσ(1)c†σ(2)

〉
φ

+ µG(1, 2)φ

− δ(1− 2)

− φ(1, 2̄)G(2̄, 2)φ, (3.78)
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3 GREEN’S FUNCTIONS AND SUSCEPTIBILITIES

where the first line originates from Eq. 3.77, the second from the time derivative of
Θ(τ1 − τ2) and Θ(τ2 − τ1) - implicitly hidden in the time ordering operator - and the
last line from S[φ] since the integral in the exponential has to be also time ordered: In

this case the integral will split into
∫ β

0 =
∫ τ1

0 +
∫ β
τ1

. The appearing superscript + is just
an aid to the reader that the operators are already in the right time order, i.e. every +
is an additional infinitesimal positive shift in imaginary time. Furthermore, one defines

G−1
0 (1, 2)φ ≡ −

∑
j

[
δ(~rj − ~r2)δ(τ1 − τ2)

((
∂

∂τ1
− µ

)
δj,1 − t1j

)]
(3.79)

that consequently gives

G−1
0 (1, 2̄)φG(2̄, 2)φ = −

∑
j

((
∂

∂τ1
− µ

)
δj,1 − t1j

)G(~rj − ~r2, τ1 − τ2)φ. (3.80)

Now, we are able to rearrange the equation of motion for the Green’s function G(1, 2)φ
(Eq. 3.78) and get(

G−1
0 (1, 2̄)φ − φ(1, 2̄)

)
G(2̄, 2)φ = δ(1− 2)

− U
〈
Tτ c
†
−σ(1+)c−σ(1)cσ(1)c†σ(2)

〉
φ
. (3.81)

Noticing the δ-function on the right-hand side it is not very difficult to recover the
Dyson equation

G−1(1, 2)φ = G−1
0 (1, 2)φ − φ(1, 2)− Σ(1, 2)φ | ∗G(2̄, 2)φ (3.82)

δ(1− 2) =
(
G−1

0 (1, 2̄)φ − φ(1, 2̄)− Σ(1, 2̄)φ
)
G(2̄, 2) (3.83)

3.81
=⇒ Σ(1, 2̄)φG(2̄, 2)φ = −U

〈
Tτ c
†
−σ(1+)c−σ(1)cσ(1)c†σ(2)

〉
φ

|3.73 (3.84)

Σσ(1, 2̄)φGσ(2̄, 2)φ = −U
[
δGσ(1, 2)φ
δφ−σ(1+, 1)

−G−σ(1, 1+)φGσ(1, 2)φ

]
. (3.85)

Since we have a lot of integrations and summations to perform in the following, we will
introduce the following matrix notation

AB ≡ A(1, 2̄)B(2̄, 2) (3.86)

A ∧B ≡ A(1, 2)B(3, 4) (3.87)

One finds a different way of expressing δG
δφ by starting from the simple equation

δ(1− 2) = Gσ(1, 2̄)G−1
σ (2̄, 2)

∣∣∣∣ δ

δφσ′(3, 4)
(3.88)

0 =
δGσ
δφσ′

G−1
σ +Gσ

δG−1
σ

δφσ′
(3.89)

δGσ
δφσ′

= −Gσ
δG−1

σ

δφσ′
Gσ |3.82 (3.90)

= −Gσ
δG−1

0,σ

δφσ′
Gσ +Gσ

δφσ
δφσ′

Gσ +Gσ
δΣσ

δφσ′
Gσ
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3.5 Interacting Green’s function and self-energy

= Gσ ∧Gσδσ,σ′ +Gσ
δΣσ

δφσ′
Gσ. (3.91)

A Legendre transformation of ln(Z[φ]) (Eq. 3.71) gives the so-called Luttinger-Ward
functional Φ[G] that is a functional of G [13]. It was shown [14] that perturbation
theory in the not strongly interacting regime converges and since this is the domain of
TPSC we will use the Luttinger-Ward functional Φ[G].
The Legendre transformation allows us to express the self-energy Σ as a functional of
G and one can use the chain rule to rewrite 3.91

δGσ
δφσ′

= Gσ ∧Gσδσ,σ′ +Gσ

[
δΣσ

δGσ̄

δGσ̄
δφσ′

]
Gσ (3.92)

δGσ(1, 2)φ
δφσ′(3, 4)

=Gσ(1, 3)φGσ(4, 2)φδσ,σ′

+Gσ(1, 5̄)φ

[
δΣσ(5̄, 6̄)φ
δGσ̄(7̄, 8̄)φ

δGσ̄(7̄, 8̄)φ
δφσ′(3, 4)

]
Gσ(6̄, 2)φ. (3.93)

So far, we found an equation for the self-energy that is consistent with the Dyson
equation and bears no approximations so far.
The next section shows how to introduce generalized susceptibilities and connect them
with the self-energy.

3.5.2. Spin and charge susceptibilities

The spin Sz(1) and charge n(1) are defined as

Sz(1) ≡ n↑(1)− n↓(1) (3.94)

n(1) ≡ n↑(1) + n↓(1). (3.95)

Those can be identified in the functional derivative of Gφ given in Eq. 3.73 as

−
δGσ(1, 1+)φ
δφσ′(2+, 2)

= −〈TτΨσ(1)Ψ†σ(1+)Ψ†σ′(2
+)Ψσ′(2)〉φ −Gσ(1, 1+)φGσ′(2, 2

+)φ

= 〈TτΨ†σ(1+)Ψσ(1)Ψ†σ′(2
+)Ψσ′(2)〉φ −Gσ(1, 1+)φGσ′(2, 2

+)φ

= 〈Tτnσ(1)nσ′(2)〉φ − 〈nσ(1)〉φ〈nσ′(2)〉φ (3.96)

Remembering the ideas of Sec. 3.1 we define the charge susceptibility χch

χch(1, 2)φ ≡ 〈Tτn(1)n(2)〉φ − 〈n(1)〉φ〈n(2)〉φ (3.97)

and already see

χch(1, 2)φ = −
∑
σ,σ′

δGσ(1, 1+)φ
δφσ′(2+, 2)

, (3.98)

when we sum all spin up and spin down terms and use the definition of the charge n(1).
In the case of the spin susceptibility χsp we are dealing with terms like

(n↑(1)− n↓(1))(n↑(2)− n↓(2)) (3.99)
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3 GREEN’S FUNCTIONS AND SUSCEPTIBILITIES

and have therefore negative signs when different spins are multiplied. Similarly, we
define the spin susceptibility

χsp(1, 2)φ ≡ 〈TτSz(1)Sz(2)〉φ − 〈Sz(1)〉φ〈Sz(2)〉φ, (3.100)

where

χsp = −
∑
σ,σ′

σ ∗ σ′ ∗
δGσ(1, 1+)φ
δφσ′(2+, 2)

. (3.101)

Since the Hubbard Hamiltonian (Eq. 2.1) is spin-rotational invariant we can calculate

χch = −
∑
σ,σ′

δGσ
δφσ′

|3.92

= −
∑
σ,σ′

(
Gσ ∧Gσδσ,σ′ +Gσ

[
δΣσ

δGσ̄

δGσ̄
δφσ′

]
Gσ

)

= −2G ∧G−G

∑
σ,σ′′

δΣσ

δGσ′′

∑
σ′

δGσ′′

δφσ′

G
= −2G ∧G−G

∑
σ

δΣσ

δG

∑
σ′,σ′′

δGσ′′

δφσ′

G
= −2G ∧G+G

[∑
σ

δΣσ

δG
χch

]
G

≡ −2G ∧G+G [Uchχch]G. (3.102)

The function Uch is called irreducible charge vertex and will be analyzed later. To
compute χsp we need the following consideration where one again uses spin rotational
invariance ∑

σ

σ ∗ σ′ ∗ δΣσ

δGσ′
= σ′ ∗

(
δΣ↑
δGσ′

−
δΣ↓
δGσ′

)

=


(
δΣ↑
δG↑
− δΣ↓

δG↑

)
, for σ′ = 1(

δΣ↓
δG↓
− δΣ↑

δG↓

)
, for σ′ = −1

=

(
δΣ↑
δG↑

−
δΣ↓
δG↑

)
(3.103)

and therefore

χsp = −
∑
σ,σ′

σ ∗ σ′ δGσ
δφσ′

|3.92

= −2G ∧G−G

∑
σ,σ′′

σ ∗ 1 ∗ δΣσ

δGσ′′

∑
σ′

δGσ′′

δφσ′
∗ σ′

G
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= −2G ∧G−G

∑
σ,σ′′

σ ∗
(
σ
′′
)2
∗ δΣσ

δGσ′′

∑
σ′

δGσ′′

δφσ′
∗ σ′

G
= −2G ∧G−G

∑
σ′′

∑
σ

(
σ ∗ δΣσ

δGσ′′
∗ σ′′

)∑
σ′

σ
′′ ∗

δGσ′′

δφσ′
∗ σ′

G |3.103

= −2G ∧G−G

( δΣ↑
δG↑

−
δΣ↓
δG↑

) ∑
σ′,σ′′

σ
′′ ∗

δGσ′′

δφσ′
∗ σ′

G
= −2G ∧G−G

[(
δΣ↑
δG↑

−
δΣ↓
δG↑

)
χsp

]
G

≡ −2G ∧G−G [Uspχsp]G. (3.104)

Similarly, Usp is called irreducible spin vertex.
Up to this point we have only used symmetries, the form of the Hamiltonian and

limited ourselves to weak and intermediate interaction strengths. Nevertheless, it is
very hard to continue now and approximations will be needed to find physically relevant
solutions.
But what was presented so far is all we need to derive RPA and afterwards TPSC.
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4 TWO-PARTICLE SELF-CONSISTENT APPROACH AND RANDOM PHASE
APPROXIMATION

4. Two-Particle Self-Consistent approach and Random Phase
Approximation

4.1. Sum rules

The starting point for TPSC in this thesis will be two sum rules which can be directly
derived from the simplest form of Pauli principle (〈n2

σ〉 = 〈nσ〉) taking advantage of
paramagnetism 〈n↓〉 = 〈n↑〉 = 〈n〉/2:

〈Sz(0+)Sz(0)〉 − 〈Sz(0)〉〈Sz(0)〉 = 〈(n↑ − n↓)2〉 − 0

= 〈n2
↑〉+ 〈n2

↓〉 − 2〈n↑n↓〉
Pauli

= n− 2〈n↑n↓〉 (4.1)

〈ρ(0+)ρ(0)〉 − n2 = 〈(n↑ + n↓)
2〉 − n2

= 〈n2
↑〉+ 〈n2

↓〉+ 2〈n↑n↓〉 − n2

Pauli
= n+ 2〈n↑n↓〉 − n2. (4.2)

Having a close look on the left-hand side of the equations and making use of transla-
tional invariance we find sums over the spin susceptibility χsp(0, 0

+) (Eq. 3.104) and
the charge susceptibility, χch(0, 0+) (Eq. 3.102):

〈Sz(0+)Sz(0)〉 − 〈Sz(0)〉〈Sz(0)〉 = χsp(0, 0
+)

=
1

N

∑
~q

ei~q·
~0χsp(~q, 0

+)

=
T

N

∑
~q,iqn

eiqn·0
+
χsp(~q, iqn). (4.3)

4.1⇒ T

N

∑
~q,iqn

χsp(~q, iqn) = n− 2〈n↑n↓〉 : local spin sum rule (4.4)

〈ρ(0+)ρ(0)〉 − n2 = χch(0, 0+) (4.5)

4.2⇒ T

N

∑
~q,iqn

χch(~q, iqn) = n+ 2〈n↑n↓〉 − n2 : local charge sum rule (4.6)

As can be seen from the derivation of the two sum rules these equations are strict and
serve in this work as direct representation of the Pauli principle. Thereupon, they will
play a crucial role in the self-consistency of TPSC.

4.2. The Random Phase Approximation (RPA)

In 1953 [15], Bohm and Pines published a new method to treat the Coulomb interaction
of a dense electron gas.
The key ideas became known as Random Phase Approximation (RPA) that are applied
in this chapter to the Hubbard Hamiltonian. To derive the RPA susceptibilities we start
from the defining equation for the self-energy (Eq. 3.85) and use the Hartree-Fock
approximation, i.e.

Σσ(1, 2̄)φGσ(2̄, 2)φ = −U
[
δGσ(1, 2)φ
δφ−σ(1+, 1)

−G−σ(1, 1+)φGσ(1, 2)φ

]
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≈ UG−σ(1, 1+)φGσ(1, 2)φ | ∗ (Gσ(2̄, 2))−1 (4.7)

Σσ(1, 2)φ = UG−σ(1, 1+)φδ(1− 2). (4.8)

Using the above equations one can calculate the functional derivations of the self-energy

δΣσ(1, 2)φ
δG−σ(3, 4)φ

= Uδ(1− 2)δ(3− 1)δ(4− 2) (4.9)

δΣσ(1, 2)φ
δGσ(3, 4)φ

= 0 (4.10)

that can be used to calculate the irreducible vertices (Eq. 3.104, 3.102) and since the
self-energy is merely a constant we can replace the Green’s function G by the non-
interacting Green’s function G0 and get finally

χRPAch (1, 2) = 2χ0(1, 2)− Uχ0(1, 3̄)χRPAch (3̄, 2)

=
2χ0(1, 2)

1 + Uχ0(1, 2)
(4.11)

trans.inv.−→ χRPAch (~q, iqn) =
2χ0(~q, iqn)

1 + Uχ0(~q, iqn)
(4.12)

χRPAsp (1, 2) = 2χ0(1, 2) + Uχ0(1, 3̄)χRPAsp (3̄, 2)

=
2χ0(1, 2)

1− Uχ0(1, 2)
(4.13)

trans.inv.−→ χRPAsp (~q, iqn) =
2χ0(~q, iqn)

1− Uχ0(~q, iqn)
, (4.14)

where we have defined the irreducible susceptibility

χ0(1, 2) ≡ −G0(1, 2)G0(2, 1),

the Lindhard function

χ0(~q, iqn) = − 1

Nβ

∑
~k,ikm

G0(~k; ikm)G0(~k + ~q; ikm + iqn)

= − 1

N

∑
~k

f
(
ξ~k
)
− f

(
ξ~k+~q

)
iqn −

[
ξ~k+~q

− ξ~k
] .

and bosonic Matsubara frequencies

qn = 2πnT.

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Note that the irreducible vertices Usp and Uch are mere constants equal to U .

4.2.1. Disadvantages of RPA

In this section we show two disadvantages of RPA that can serve as a motivation for
TPSC.
(1) Violation of the Pauli principle

Adding the local spin sum rule (Eq. 4.4) and the local charge sum rule (Eq. 4.6) one
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gets

T

N

∑
~q,iqn

(χsp(~q, iqn) + χch(~q, iqn)) = 2n− n2 (4.20)

that can be expanded for small interactions Uχ0:

T

N

∑
~q,iqn

(
2χ0(~q, iqn)

1− Uχ0(~q, iqn)
+

2χ0(~q, iqn)

1 + Uχ0(~q, iqn)

)
≈ T

N

∑
~q,iqn

[
2χ0(~q, iqn)(1 + Uχ0(~q, iqn) + (Uχ0(~q, iqn))2)+

+ 2χ0(~q, iqn)(1− Uχ0(~q, iqn) + (Uχ0(~q, iqn))2)
]

=
T

N

∑
~q,iqn

(
2χ0(2 + 2 (Uχ0(~q, iqn))2)

)
. (4.21)

Since the Lindhard-function is positive and real there is no way that the term ∼ U2

can vanish.
But the above sum rule is also valid for the non-interacting case, i.e. U = 0, and
violates therefore the Pauli principle with an ∼ U2 growing error. Moreover, the situ-
ation gets worse when U = 1/max~q,iqn{χ0(~q, iqn)} and one hits the divergence of the
spin susceptibility χsp (Eq. 4.14). The result of the sum rule will not work and the
numerical calculation gives random numbers (Fig. 4.4).

(2) Phase transtion in 2D and Mermin-Wagner theorem

As was discussed in (1) the spin susceptibility can diverge and become negative
(U >= 1/max~q,iqn{χ0(~q, iqn)}). Hence, the paramagnetic ground state is not stable
anymore and leads to a phase transition (even in 2D) which is prohibited by the Mermin-
Wagner theorem.

4.2.2. Starting point: tr(Σ G)

To obtain the equations of TPSC one starts from the universal equation for the self-
energy Σσ(1, 2)φ (Eq. 3.85):

Σσ(1, 2̄)φGσ(2̄, 2)φ = −U
[
δGσ(1, 2)φ
δφ−σ(1+, 1)

−G−σ(1, 1+)φGσ(1, 2)φ

]
| ∗G−1

σ (2̄, 2)φ

(4.22)

Σσ(1, 2)φ = UG−σ(1, 1+)δ(1− 2) + U
δGσ(1, 2̄)φ
δφ−σ(1+, 1)

G−1
σ (2̄, 2)φ

= Un−σδ(1− 2) + U
δGσ(1, 2̄)φ
δφ−σ(1+, 1)

G−1
σ (2̄, 2)φ. (4.23)

In contrast to the section about spin and charge susceptibilities (Sec. 3.5.2) where
it was possible to draw connections between the spin susceptibility χsp, the charge

susceptibility χch and
δGσ(1,1+)φ
δφσ′ (2

+,2)
we are now dealing with

δGσ(1,2)φ
δφσ′ (1

+,1)
.
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So, it is necessary to introduce the generalized three-point susceptibilities

χσ,σ′(1, 3; 2)φ ≡ −
δGσ(1, 3)

δφσ′(2+, 2)
. (4.24)

Nevertheless, one can repeat the same steps as in Sec. 3.5.2, i.e. using the functional
derivative of the Green’s function (Eq. 3.73) to evaluate the functional derivative of
the self-energy and gets

χσ,σ′(1, 3; 2)φ =−Gσ(1, 2)φGσ(2, 3)φδσ,σ′

+Gσ(1, 2̄)φUir,σσ̄(2̄, 3̄; 4̄, 5̄)χσ̄,σ′(4̄, 5̄; 2)φGσ(3̄, 3)φ. (4.25)

Differently, one deals now with a generalized irreducible vertex Uir,σσ′ that is defined
as before but allows all combination of spins σσ′:

Uir,σσ′ ≡
δΣσ(1, 2)φ
δGσ′(3, 4)φ

. (4.26)

In the second step one supposes spin-rotational invariance to decouple into symmetric
and antisymmetric parts that correspond to the charge and spin susceptibility, respec-
tively.
The final result has got exactly the same structure as before but more indices

χsp ≡2(χ↑↑ − χ↓↑) (4.27)

Usp ≡Uir,↑↑ − Uir,↓↑ (4.28)

χsp(1, 3; 2)φ =− 2G(1, 2)φG(2, 3)φ

−G(1, 2̄)φ [Usp(2̄, 3̄; 4̄, 5̄)χsp(4̄, 5̄; 2)φ]G(3̄, 3)φ (4.29)

χch ≡2(χ↑↑ + χ↓↑) (4.30)

Uch ≡Uir,↑↑ + Uir,↓↑ (4.31)

χch(1, 3; 2)φ =− 2G(1, 2)φG(2, 3)φ

+G(1, 2̄)φ [Uch(2̄, 3̄; 4̄, 5̄)χch(4̄, 5̄; 2)φ]G(3̄, 3)φ. (4.32)

Resuming the last equation for the self-energy Σ (Eq. 4.23) one calculates

Σσ(1, 2)φ =− Un−σδ(1− 2) + U
δGσ(1, 2̄)φ
δφ−σ(1+, 1)

G−1
σ (2̄, 2)φ |4.24

= Un−σδ(1− 2) + Uχσ−σ(1, 2̄; 1)G−1
σ (2̄, 2)φ |4.25

= Un−σδ(1− 2)

+ U [Gσ(1, 2̄)φUir,σσ̄(2̄, 3̄; 4̄, 5̄)χσ̄,−σ(4̄, 5̄; 1)φGσ(3̄, 2̄)φ]G−1
σ (2̄, 2)φ

= Un−σδ(1− 2) + U [Gσ(1, 2̄)φUir,σσ̄(2̄, 2; 4̄, 5̄)χσ̄,−σ(4̄, 5̄; 1)φ] |4.32

= Un−σδ(1− 2)

+
U

4
Gσ(1, 2̄)φ [Usp(2̄, 2; 4̄, 5̄)χsp(4̄, 5̄; 1) + Uch(2̄, 2; 4̄, 5̄)χch(4̄, 5̄; 1)] . (4.33)

Central idea of TPSC is to average over all higher order correlations instead of taking
them fully into account.
Mathematically, this is accomplished by parametrizing the Luttinger-Ward functional
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Φ[G] by two constants (!) Uσ−σ and Uσσ, i.e.

Φ[G] = 0.5
[
Gσ̄(1̄, 1̄+)Uσ̄σ̄Gσ̄(1̄, 1̄+) +Gσ̄(1̄, 1̄+)Uσ̄−̄σG−̄σ(1̄, 1̄+)

]
. (4.34)

From this the irreducible vertices become

Uir,σσ′(1, 2; 3, 4) =
δΣσ(1, 2)

δGσ′(3, 4)

=
δ2Φ[G]

δGσ(2, 1)δGσ′(3, 4)

= δ(1− 4)δ(2− 3)δ(3+ − 4)Uσσ′ . (4.35)

Inserting this result into the self-energy expression (Eq. 4.33) and the susceptibilities
(Eq. 4.32) and taking in both cases the non-interacting Green’s function G0 to be
consistent regarding the level of approximation one gets

χsp(~q, iqn) =
2χ0(~q, iqn)

1− Uspχ0(~q, iqn)
(4.36)

χch(~q, iqn) =
2χ0(~q, iqn)

1 + Uchχ0(~q, iqn)
(4.37)

Σσ(~k, ikn) = Un−σ

+
TU

N4

∑
~q,iqm

[Uspχsp(~q, iqm) + Uchχch(~q, iqm)]G0,σ(~k + ~q, ikn+m). (4.38)

But the TPSC-approximation creates an ambiguity in the calculation of the self-energy
because the full irreducible vertex Uir,σσ′ can be devided into a parallel-spin- (longitu-
dinal) and an antiparallel-spin- (transversal) channel [16] that gives

Σtrans
σ (~k, ikn) = Un−σ +

TU

2N

∑
~q,iqm

[Uspχsp(~q, iqm)]G0,σ(~k + ~q, ikn+m). (4.39)

Averaging over both channels is expected to give a better self-energy since it preserves
crossing-symmetry and on obtains finally

Σσ(~k, ikn) = Un−σ

+
TU

N8

∑
~q,iqm

[3Uspχsp(~q, iqm) + Uchχch(~q, iqm)]G0,σ(~k + ~q, ikn+m). (4.40)

4.2.3. Correlation lengths

Strong antiferromagnetic correlations are supposed to drive superconductivity and sup-
press spectral weight A(~k, ω) at ω = 0 in the 2D Hubbard model [17, 18, 19] and
therefore it is natural to introduce the antiferromagnetic correlation length

ξ ≡ ξ0

√√√√ Usp
1

χ0( ~Q,iq0)
− Usp

, (4.41)

where: ξ0 ≡

√
− 1

2χ0(Q)

∂2χ0(~q, iq0)

∂q2
x

∣∣∣∣
~q= ~Q

. (4.42)
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where ~Q is defined as χ( ~Q, iq0) = max~q(χ0(~q, iq0)) following [1, 20, 21]. Moreover, one
calls the region where ξ grows exponentially as a function of the inverse temperature
1/T and surpasses the thermal de Broglie wave length

ξth ≡
< vF >FS

πT
, (4.43)

- the average <>FS is taken over the Fermi surface - the classical renormalized regime
and the temperature associated with this crossover is denoted Tx (Fig. 4.1).
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Figure 4.1: Growing antiferromagnetic correlation length ξ at low temperatures. The

classical renormalized starts at T ≈ 0.275eV for the square lattice, t′ = 0,
U/t = 6 and n = 1.

For practical calculations we take a rough estimate for ξ that is denoted by

ξ̃ ≡ max
~q,n

(
χsp(~q, iqn)

χ0(~q, iqn)

)
(4.44)

and check whether ξ̃ = 200 [22]. If this is the case, we have a look at ξ(T ) to confirm
that it is indeed shows the expected behaviour.

4.3. Two-particle properties and self-consistency equations

To determine Usp and Uch we will use the sum rules Eq.4.4 and 4.6. Since these depend
on the two-particle correlator 〈n↑n↓〉 another equation is needed to solve the set of
equations.
The simplest way to tackle this problem is to make an approximative guess: Usp de-
scribes the effective interaction in the singular spin channel, so one might renormalize
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the Hubbard interaction by the probability to find two electrons on one site P↑↓, which
reproduces the Kanamori-Brueckner screening, i.e.

Usp ≈ P↑↓U P↑↓ =
〈n↑n↓〉
〈n↑〉〈n↓〉

. (4.45)

This ansatz is motivated by the work of Singwi et al. [23]. If n > 1 one can do
particle-hole transformation to keep the probabilistic picture of the approximation and
the particle-hole symmetry.
Unfortunately, the ansatz fails inside the classical renormalized regime, i.e. T < Tx,
since the Lindhard function χ0 grows with decreasing temperature and from the local
spin sum rule (Eq.4.4) we can see that the double occupancy < n↑n↓ > will go to zero
as can be seen in Fig. 4.2.

0.09

0.11

0.13

0.145

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

< n↑n↓>

T/t
Figure 4.2: The double occupancy < n↑n↓ > - obtained from the ansatz Eq. 4.45 - de-

creases fast at low temperatures T < Tx due to the growing non-interacting
susceptibility χ0 that enters the local spin sum rule (Eq. 4.4). To avoid these
unphysical effects one can use the double occupancy obtained at T = Tx
since it does not change drastically for T . Tx [24]. The calculations were
performed for the square lattice with t′ = 0, n = 1 and U/t = 4.

As proposed by Vilk and Tremblay [1] one might use the double occupancy at T = Tx
and make advantage of the small changes in the regime T . Tx [24].

The name Two-Particle Self-Consistent theory is rooted in the fact that it enforces
two-particle properties like the Pauli principle.
Thereupon, it does not violate the Mermin-Wagner theorem.
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Proof by contradiction:

T

N

∑
~q,iqn

χsp(~q, iqn) = n− 2〈n↑n↓〉 |4.36, 4.45

T

N

∑
~q,iqn

2χ0(~q, iqn)

1− U 〈n↑n↓〉
〈n↑〉〈n↓〉χ0(~q, iqn)

= n− 2〈n↑n↓〉. (4.46)

A phase transition at finite temperature means a divergence in the spin susceptibility,
i.e.

1− U
〈n↑n↓〉
〈n↑〉〈n↓〉

χ0(~q, iqn) = 0 (4.47)

〈n↑n↓〉 =
〈n↑〉〈n↓〉
Uχ0(~q, iqn)

> 0

〈n↑n↓〉 > 0. (4.48)

The left-hand side of Eq. 4.46 diverges towards +∞ only when 〈n↑n↓〉 > 0 but the
right-hand side can only go to +∞ when 〈n↑n↓〉 → −∞.

�

To see that the Kanamori-Brueckner screening is properly included in the ansatz for
the effective spin vertex (Eq. 4.45) one has to consider the spin susceptibility χsp far
away from the phase transition, i.e. in Eq. 4.36 it shows a small denominator.
Proof:
Away from phase transition χsp given in Eq. 4.36 can be expanded in linear order of
U and takes the form

χsp(q) ≈ 2χ0(q)(1 + Uspχ0(q)). (4.49)

This expression can now be inserted in the spin sum rule (Eq. 4.4) and solved for
〈n↑n↓〉:

n− 2〈n↑n↓〉
4.45
≈ T

N

∑
q

2χ0(q)

(
1 + U

〈n↑n↓〉
〈n↑〉〈n↓〉

χ0(q)

)
. (4.50)

Since the charge sum rule (Eq. 4.6) is valid for all values of U (especially for U=0) it
can be used to calculate the first sum,

n− 2〈n↑n↓〉 = n+ 2〈n↑n↓〉 − n2 +
2U〈n↑n↓〉
〈n↑〉〈n↓〉

T

N

∑
q

χ0(q)2 (4.51)

n2 = 〈n↑n↓〉

(
4 +

2U

〈n↑〉〈n↓〉
T

N

∑
q

χ0(q)2

)
. (4.52)

In the non-magnetic case one can simplify as follows:

P↑↓ =
〈n↑n↓〉
n2/4

≈ 1

1 + U
2n2

T
N

∑
q χ0(q)2

. (4.53)

From this equation the Kanamori-Brueckner screening of Usp can be seen in the TPSC
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ansatz Eq. 4.45:

Usp = P↑↓U ≈
1

1
U + 1

2n2
T
N

∑
q χ0(q)2

U→∞−→ 1
1

2n2
T
N

∑
q χ0(q)2

. (4.54)

�

This saturation value is of the order of the inverse bandwidth [25] which is related to
the maximum energy to form a node in the two-body wave function on the same site.
This node is energetically more favorable than the on-site repulsion and leads to an
effective screening. Meanwhile, it could be expected that Uch shows some divergence
at large U/t which announces the Mott insulator transition (Fig. 4.3).

0

5

10

15
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U sp/t, 
U ch/t

Figure 4.3: The irreducible spin vertex Usp shows a convergence due to Kanamori-
Brueckner screening. Differently, the irreducible charge vertex Uch exhibits
a divergence that is related to the Mott insulator transition. The calcula-
tions are done at T/t=0.3, n=1 and t′=0.

By construction both irreducible vertices Usp and Uch do not violate the local spin
and charge sum rules (Eq. 4.4 and Eq. 4.6) while RPA does (Sec. 4.2.1). At a
temperature dependent critical value of U/t the denominator in χRPAsp (Eq. 4.14) goes
to zero and one gets numerically arbitrary values for the sum rules (Fig. 4.4).

Finally, the TPSC ansatz has to be applied to the single-particle self-energy (Eq.
4.33) and gives together with the Dyson equation a set of equations:

Σσ(k) = Un−σ +
U

8

T

N

∑
q

[3Uspχsp(q) + Uchχch(q)]G0,σ(k + q) (4.55)

G(k) = G0(k) +G0(k)Σ(k)G(k). (4.56)

The procedure for calculating this particle-hole-symmetric self-energy consists of the
following steps:
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Figure 4.4: Adding up the local spin and charge sum rules (4.4 and 4.6) yields a con-
stant in TPSC over the whole range of U/t while the result obtained by
RPA grows first quadratically and crosses a divergence at U/t ≈ 3.4 that
gives numerically random numbers that depend on the resolution if the cal-
culation would be caried on. The temperature was set to T/t=0.5 at half
filling within the square lattice.

1. Starting from the bare Green’s function G0(k) one calculates the self-energy from
the TPSC approximation (Eq. 4.55).
2. Next, one has to update the chemical potential µ from Eq. 3.58.

To sum up, the set of self-consistent equations is given in the first box:

χsp(q) =
2χ0(q)

1− Uspχ0(q)

χch(q) =
2χ0(q)

1 + Uchχ0(q)

T

N

∑
q

χsp(q) = n− 2〈n↑n↓〉

T

N

∑
q

χch(q) = n+ 2〈n↑n↓〉 − n2

Usp = U
〈n↑n↓〉
〈n↑〉〈n↓〉

, (4.57)

while the self-energy is evaluated as a single-shot quantity to keep the level of approx-
imation

Σσ(k) = Un−σ +
U

8

T

N

∑
q

[3Uspχsp(q) + Uchχch(q)]G0,σ(k + q)

G(k) = G0(k) +G0(k)Σ(k)G(k). (4.58)
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4.3.1. Internal checks

The most important internal check that is available for TPSC comes from inserting the
expression for δG

δφ (Eq. 3.96) into the expression for tr(ΣG) (Eq. 3.85):

T

N

∑
k

Σσ(k)G0,σ(k) = U〈n↑n↓〉 (4.59)

Keeping in mind that being consistent at every step of TPSC means taking G0,σ instead
of the full Green’s function Gσ in Eq. 4.59.
This equation serves as one of many internal integrational resolution checks since this
equation has to be always satisfied.
Any deviation between left-hand side and right-hand side above 3% stops the pro-
gram and gives an error message with an advise to increase accuracy, i.e. Matsubara
frequencies and/or ~k-points.

On the other hand, this equation is in general valid for the full Green’s function Gσ
and therefore the difference between tr(ΣG) and tr(ΣG0) gives an error estimation for
TPSC.
In the case where the deviation is more than ∼ 15% one should be careful and interpret
the data, if any, qualitatively.

Other important internal checks are the monotonuous decrease with increasing Mat-
subara frequencies of χ0(~k, iqn), χsp(~k, iqn), χch(~k, iqn), G(~k, iqn), Im(Σ(~k, iqn)) and

Re(Σσ(~k, iqn)) − Un−σ for all given ~k. Problems that might occur are discussed in
App. A and it is shown there how to fix them.

4.4. The Fluctuation Exchange approximation (FLEX)

Other self-consistent approaches like the Fluctuation Exchange approximation (FLEX)
violate the Pauli principle but respect conservation laws. The procedure is similar to
TPSC and consists of taking some subset of skeleton diagrams that build a Luttinger-
Ward functional [26].
Again, one has to perform functional derivatives to get a self-energy that is self-
consistent with the subset of diagrams in the Luttinger-Ward functional. In the end,
FLEX yields a self-energy

Σ(k) = Un−σ +
UT

4N

∑
q

[(3Uχ̃RPAsp (q)− 2Uχ̃0(q))− Uχ̃RPAch (q)]Gσ(k + q), (4.60)

where the superscript ∼ signals that for the calculation one has to take the dressed
Green’s function G.

Since the diagrams used in FLEX do not contain all exchange diagrams it violates
the Pauli principle [27].
Moreover, there is no internal mechanism to limit the value of 〈n↑n↓〉 and even the
equation for tr(ΣG) (Eq. 4.59) is not fulfilled if the correlator 〈n↑n↓〉 is calculated from
the susceptibilities via sum rules.
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5. Superconductivity

5.1. The linearized Eliashberg equation

Strong antiferromagnetic correlations might be the driving mechanism that induces the
creation of Cooper pairs in unconventional superconductors. In this work, we will study
superconductivity within the Eliashberg theory that leads to the following equation for
the superconducting gap function ∆(~k, ikn):

λ∆(~k, ikn) = −1

2

∑
~k′,ikm

V (~k − ~k′, ikn − ikm)G(−~k′,−ikm)∆(~k′, ikm)G(~k′, ikm)

≡M ∗∆ (5.1)

V (~q, iqn) ≡ U +
3

2
Uspχsp(~q, iqn)U − 1

2
Uchχch(~q, iqn)U, (5.2)

where V is the pairing potential in the singlet case and λ is the largest positive eigen-
value of the equation. Superconductivity is reached when λ = 1.
Usually, one is interested in the even frequency gap function, i.e.

∆(ikn) = ∆(−ikn) (5.3)

and since we limit ourselves to the singlet case we have inversion symmetry,

∆(~k, ikn) = ∆(−~k,−ikn). (5.4)

Numerically, we can simplify the calculations by choosing ∆ to be real.
Secondly, one determines the largest eigenvalue by application of the power method:
1) Starting with a random gap function ∆0(~k, ikn) one calculates the right-hand side of
the linearized Eliashberg equation 5.1. It makes calculations much faster to start with
an already symmetric function and a Matsubara-decreasing function like

∆0(~k, ikn) =
cos(kx)− cos(ky)

k2
n

(5.5)

but it is always recommended to start with a random gap as a preliminary test. The
resulting gap is called ∆̃1(~k, ikn)
2) We calculate

λ0 = max
~k,ikn

[∆̃1(~k, ikn)] (5.6)

and normalize

∆1 = ∆̃1/λ0. (5.7)

3) We reiterate the procedure with ∆i and λi−1 to get ∆i+1 and λi, i ∈ N, until both
do not change anymore within some tolerance.
Experience taught us that the converged eigenvalue λ̃ is in general negative but this is
fine since the power method provides the eigenvalue with the largest absolute value.
In that case one has to continue with the following:
4) We redo all steps 1) to 3) but subtract after every evaluation of the linearized
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Eliashberg equation (Eq. 5.1) the term λ̃∆i−1, i.e.

∆̃i = M ∗∆i−1 − λ̃∆i−1 (5.8)

that again has to be normalized by the maximal entry and so on and so forth.
5) When ∆ and λ are converged one has to do the transformation

λ→ λ+ λ̃ (5.9)

to get the maximal eigenvalue for the initial problem.

5.2. Symmetry of the gap function

Since we have limited ourselves to singlet pairs of electrons it is now possible to expand
the gap function in spherical harmonics with even angular momentum l. The two
important cases for this work are the solutions with angular momentum l = 0, 2 that
are called s- and d-wave, respectively.
The s-wave solution is just constant in ~k-space and known from the phonon-coupling
in the BCS theory.

(a) (b)

Figure 5.1: (a) dxy-symmetry of the gap function shows nodes along the reciprocal
lattice vectors. (b) dx2−y2-symmetric gap functions show nodes along the
diagonals of the first Brillouin zone.

In contrast to this, the d-wave solution (Fig. 5.1) is often encountered in high-
temperature superconductors like cuprates or organic charge transfer salts.
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6. Numerical results for the square and triangular lattice

Implementing the TPSC equations of 4.57, 4.58 one is able to study a variety of ob-
servables. In this work we will concentrate on the pseudogap physics and the d-wave
superconductivity for the square lattice and the triangular lattice within the single-
orbital Hubbard model.

6.1. Square lattice - Cuprates

As described in Sec. 4.2.3 the antiferromagnetic correlation length is a quantity that
measures the antiferromagnetic correlations and leads to the pseudogap physics that
is believed to be crucial for the understanding of the superconductivity in cuprates.
Therefore, the first calculations are dedicated to the suppression of spectral weight at
ω = 0 and the calculation of the cross-over temperature Tx.

6.1.1. Pseudogap and crossover temperature Tx

First, we will compare TPSC with other theories that are valid for the treated regime
of the Hubbard model.
Vilk and Tremblay [1] already found good agreement with Quantum Monte Carlo sim-
ulations (QMC) but we present comparisons with determinantal quantum Monte Carlo
simulations [28] that show the development of the pseudogap with decreasing temper-
ature.
DQMC calculations show that a very small pseudogap is already visible at T/t=0.28
but becomes distinct at T/t=0.2 which is a behavior that can be reproduced by TPSC
(Fig. 6.1).
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Figure 6.1: Spectral weight in the Hubbard square lattice system for U/t = 4, n = 1
and (a) T/t = 0.28, (b) T/t = 0.2 and (c) T/t = 0.18. The suppression
of spectral weight at ω = 0 due to growing antiferromagnetic correlations
becomes visible when the analytical continuation is carried out with the
Stochastic analytic continuation method while the Padé approximation is
not able to resolve the gap and gives even a peak at low temperatures as
shown in panel (c).

The antiferromagnetic correlations that start to grow exponentially [29, 30] below
the crossover temperature Tx (Fig. 4.1) lead to a suppression of spectral weight at
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6 NUMERICAL RESULTS FOR THE SQUARE AND TRIANGULAR LATTICE

ω = 0 and in other theories that are valid for even stronger correlations to a Mott-
metal-insulator transition at even lower temperatures [31].

Next, one can check whether the crossover temperature Tx shows the correct depen-
dence on the filling n (Fig. 2.3). Since the TPSC equations are particle-hole symmetric
we show the calculations only for the hole-doped case (Fig. 6.2).

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.86 0.9 0.94 1n

Tx/t

Figure 6.2: Dependence of the crossover temperature Tx on the filling n for U/t = 4.
The pseudogap crossover is in qualitative agreement with the experimental
results (Fig. 2.3) and Monte Carlo simulations [32] for the cuprate systems.
The small kink at n = 0.9 appears because the wavevector of the non-
interacting susceptibility χ0 is not commensurate for n ≤ 0.9.

So far, there is no satisfactory explanation for the pseudogap phase but many at-
tempts bring it into relation with the pre-forming of Cooper pairs or hidden orders like
charge-, spin-density-waves and/or electron-nematic order [33, 34].
Bringing in the results of B. Kyung et al. [35] who also performed TPSC calculation
for the same parameters one even gets the qualitatively right position of the supercon-
ducting dome below the pseudogap.

6.1.2. Superconductivity

An important characteristic of the cuprate phase diagram is the superconducting dome
that can be reproduced within TPSC by estimation of the superconducting transition
temperature Tc using the Kosterlitz-Thouless-criterion [35]. Nevertheless, one does
not have to calculate Tc to see the dome-like shape since the largest eigenvalue of
the linearized Eliashberg equation λ grows exponentially with temperature (Fig. 6.3).
Hence, one can already see the tendencies of Tc if λ ≈ 1 for given parameters.
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6.1 Square lattice - Cuprates
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Figure 6.3: Temperature dependence of the largest eigenvalue of the linearized Eliash-

berg equation λ for the square lattice with U/t = 6 and n = 1.125. The
typical exponential growth is due to the exponentially increasing correla-
tions in the pairing potential V in Eq. 5.2. The green line shows a fit of
the numerical data to the function f(x) = a · e−bx where a and b are fitting
parameters.

Therefore, the dome-like shape of the phase diagram becomes visible within the λ(n)-
plot (Fig. 6.4) and even the maximum value of Tc is near the value obtained from the
Kosterlitz-Thouless-criterion Tc/t(n = 1.125, U/t = 6) ≈ 0.725 although the peak of
the dome is slightly shifted.

The dome-like shape might be induced by the decreasing antiferromagnetic correla-
tions that are represented approximately by ξ̃ (Fig. 6.4). Near half-filling one is con-
fronted with large correlations that lead to a highly developed pseudogap and therefore
to a large suppression of spectral weight at the Fermi surface which might, in result,
hinder superconductivity (Fig. 6.5).

Having a closer look at the superconducting gap function (Fig. 6.6) and the linearized
Eliashberg equation 5.1 we see that the form of ∆(~k, ik0) is mainly developed by the
shape of the Fermi surface and the peak position of the Lindhard function χ0(~q, 0)
that is also the same for the spin susceptibility χsp(~q, 0) and the charge susceptibility
χch(~q, 0).

As another example we extended the model to diagonal hopping t′ and chose t′/t >
1 which shifts the nesting vector from (π, π) to (0, π − c) where c is a constant in
[0, π). This shift of the wavevector leads to a change of the gap symmetry, namely
from dx2−y2 to dxy. An explanation of this behavior can be seen from the linearized

Eliashberg equation 5.1 since scattering at nesting vectors that are located near ~k−~k′ ≈
(±π,±π), (∓π,±π) for dx2−y2-symmetry and ~k−~k′ ≈ (±π, 0), (0,±π) for dxy-symmetry

yields the largest contributions to the ~k′-integration [22]. Those results can be clearly
seen in Fig. 6.7.
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Figure 6.4: Filling dependence of the largest eigenvalue of the linearized Eliashberg

equation λ (red line) for the square lattice with U/t = 6 and T/t = 0.08.
Near half-filling the antiferromagnetic fluctuations are very strong causing
a large suppression of spectral weight near the Fermi surface and a decrease
in Tc. On the other hand, the same fluctuations away from half-filling are
less pronounced and lead to the dome-like shape of λ. The green line shows
ξ̃ = max

χsp
χ0

that can be interpreted as a measure of the antiferromagnetic
correlations (Sec. 4.2.3).
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Figure 6.5: Fermi surface of the (a) non-interacting and (b) interacting square lattice
system with U/t = 6, T/t = 0.06 and n = 1.075 obtained from linear fitting
of the imaginary part of G(~k, iωn) ∀~k to obtain the values at ω = iωn = 0.
Introducing a Hubbard repulsion U to the system leads to a suppression
of spectral weight that is especially important at (0, π),(π, 0),(2π, π) and
(π, 2π) because the superconducting gap has its maximum values at these
points (Fig. 6.6).
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6.1 Square lattice - Cuprates
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Figure 6.6: (a) The superconducting gap function ∆(~k, iω0) shows dx2−y2-symmetry
(therefore only the domain [0, π]×[0, π] is depicted) for the square lattice and
U/t = 6, n = 1.075 and T/t = 0.06. The form of the gap function has two
main sources: Firstly, the shape of the Fermi surface (Fig. 6.5) and secondly
the peak position of the Lindhard function χ0(~q, 0) at approximately (π, 3)
as can be seen in (b).
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Figure 6.7: Results for the square lattice with t′/t = 1.375 and U/t = 4 at half-filling
and T/t = 0.026. (a) The superconducting gap function ∆(~k, iω0) has dxy-
symmetry since the nesting vectors are found in the vicinity of (0,±π) as for
the non-interacting susceptibility χ0(~q, 0) that is shown in (b). The Fermi
surface for the non-interacting case (c) shows us the same wave vectors
when connecting occupied states and influences the shape of (a).
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6 NUMERICAL RESULTS FOR THE SQUARE AND TRIANGULAR LATTICE

6.2. Triangular lattice - Organic charge transfer salts

material t t′ U Tx
[meV] [meV] [meV] [K]

κ-(ET)2Ag(CF3)4(TCE) 67.7 30.4 336 181
κ-(ET)2I3 75.35 26.1 360 183

κ-(ET)2Ag(CN)2I·H2O 63.8 30.2 370 185
κ-α′1-(ET)2Ag(CF3)4(TCE) 66.45 32.9 332 182

κ-(ET)2Cu(NCS)2 59.75 41.2 380 45
κ-α′2-(ET)2Ag(CF3)4(TCE) 67.35 33.35 330 178
κ-(ET)2Cu[N(CN)2](CN) 58.65 39.25 350 43
κ-(ET)2Cu[N(CN)2]Br 65.9 30 354 185

Table 1: Model parameters and calculated crossover temperatures Tx for several organic
charge transfer salts.

As a second lattice geometry we consider the anisotropic triangular lattice that can be
described by a next nearest neighbor tight binding model.
A widely used example are organic charge transfer salts κ-(BEDT-TTF)2X within
the dimer model, where X stands for the anions separating the conducting layers and
BEDT-TTF is commonly abbreviated as ET. Assuming the dimers as the tight-binding
sites the model parameters t, t′ and the on-site interactions U (Tab. 1) can be derived
from geometrical relations from the molecule model [6], whose parameters in turn are
obtained by the projective Wannier function method. As the validity of the dimer
model is very controversially discussed we will use the trends of the experimental data
of the critical temperatures Tc as a benchmark for the quality of its approximations.

material Tc (TPSC) Tc [36, 37, 38, 39]
[K] [K]

κ-(ET)2Ag(CF3)4(TCE) 30.17 2.6
κ-(ET)2I3 29.01 3.6

κ-(ET)2Ag(CN)2I·H2O 31.91 5.0
κ-α′1-(ET)2Ag(CF3)4(TCE) 25.53 9.5

κ-(ET)2Cu(NCS)2 5.8 10.4
κ-α′2-(ET)2Ag(CF3)4(TCE) 23.21 11.1
κ-(ET)2Cu[N(CN)2](CN) 6.6 11.2
κ-(ET)2Cu[N(CN)2]Br 32.49 11.6

Table 2: Comparison of the calculated and experimental critical temperatures Tc for
several organic charge transfer salts.

47



6.2 Triangular lattice - Organic charge transfer salts

 5

 10

 15

 20

 25

 30

 35

 0.3  0.35  0.4  0.45  0.5  0.55  0.6  0.65  0.7

t’/t

T
c
 [
K

]

(a)

t

t

t

t

t

t'

t'

t'

t'

(b)

Figure 6.8: (a) Dependence of the critical temperature Tc (from Tab. 2) on the ratio
t′/t. (b) A small t′/t ratio allows antiferromagnetic ordering since there is
no frustration, while at large t′/t ratios antiferromagnetic spin fluctuations
are highly suppressed.

6.2.1. Pseudogap and superconductivity

First, we examine whether a pseudogap appears in the organic charge transfer salts by
using the criterion that the antiferromagnetic correlation length ξ grows exponentially
and is larger than the thermal de Broglie wave length (Sec. 3.1).
In contrast to the square lattice systems we will not use an approximate value by
stating a condition on ξ̃ (Eq. 4.44) because the model parameters show only small
differences for each system that can not be properly resolved otherwise. A table with
all crossover temperatures calculated from the above condition is given in Tab. 1. The
values of Tx are all of the same order of magnitude expect for κ-(ET)2Cu(NCS)2 and
κ-(ET)2Cu[N(CN)2](CN) that both have a large t′/t-ratio that suppresses antiferro-
magnetic correlations and hinders also superconductivity (Fig. 6.8).

Comparing the calculated results for the critical temperature Tc for superconductivity
in Tab. 2 one already sees that the pseudogap should be detected in every studied
compound since Tx > Tc.
As expected the calculated values for Tc from TPSC show large deviations from the
experimental results. This has several reasons and the most important one is that
the dimer model has been found to be a inappropriate description for the organic
charge transfer salts. Especially, when focussing on the discordant values we see that
the results highly depend on the ratio t′/t (Fig. 6.8). This can be understood as a
large t′ coupling suppresses a dx2−y2 gap function. Since this reduction of the critical
temperatures is not present in experimental observation this is already a strong hint
that further extensions with more degrees of freedom for the calculations are necessary.

Moreover, the values for the Hubbard repulsion U are derived from the rather crude
approximation U = 2t1, where t1 is the hopping amplitude between two molecules of
the dimer. As it is very difficult to obtain more accurate values for U in the dimer
model the extension to a molecule model where the tight-binding sites are located at
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Figure 6.9: Spectral weight of κ-(ET2)I3 at T = 41.78K in the noninteracting U = 0
(a-b) and interacting (c-d) case. For nonzero interactions a small pseudogap
is already visible at ω = 0.

the centers of each ET molecule allows a more systematic approach. Since the shape
of the ET molecules can be considered as independent of its crystal environment it is
justified to use the same Hubbard repulsion for every material.

As an example for the form of the pseudogap Fig. 6.9 (c-d) shows the spectral weight
for κ-(ET2)I3 at T = 41.78K and for comparison Fig. 6.9 (a-b) shows the same for
the non-interacting system. The pseudogap is just beginning to evolve and is visible in
both methods for analytical continuation.

All systems studied within the dimer model reveal dx2−y2-symmetry of the gap func-
tion as shown exemplarily in Fig. 6.10.

6.2.2. Comparisons to other theories

Since the results for the anisotropic triangular lattice exhibit large deficiencies com-
pared to the experimental results it seems reasonable to compare to other theories in
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Figure 6.10: Superconducting gap function ∆(~k, iω0) for the κ-(ET)2Cu[N(CN)2]Br
system at T = 32.96K. The system reveals dx2−y2-symmetry in the dimer
model.

order to know whether the problem is founded on the grounds of the method or the
model.
First, it was shown that FLEX also finds a wide domain of superconductivity in the
phase diagram and even yields the same dependency of Tc on the t′/t ratio [40]. Fur-
thermore, it was found that quantum Monte Carlo [41] is able to detect an enhancement
of pairing correlations for superconducting order parameters. Nevertheless, within the
variational Monte Carlo approaches it is still not clear whether a superconducting do-
main is present or not [42, 43] since the results depend on the chosen ansatz for the
wave function.
So far, it is controversial whether superconductivity is inherent property of the aniso-
tropic triangular lattice or not and at least it is not an exception that TPSC yields a
superconducting phase.
The most important point is still the wrong trend in the calculated critical tempera-
tures (Tab. 2) that motivates us to take a closer look to the molecule model for organic
charge transfer salts as explained in the outlook.
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7. Summary and Outlook

In this work we have reviewed the TPSC approach to spin fluctuation mediated super-
conductivity. We have followed the derivation of the key equations that in contrast to
the widely used random phase approximation obey the sum rules, which represent the
simplest form of the Pauli principle. Furthermore, it is a conserving approximation as
it can be constructed from a Luttinger-Ward functional like the fluctuation exchange
approximation, which suffers from the disadvantage that it violates the Mermin-Wagner
theorem in contrast to TPSC. Next, we have investigated two different lattice geome-
tries: First, we have studied square lattices that are realized f.i. in cuprates. Second,
we have examined the triangular lattice geometry on the example of the organic charge
transfer salts (dimer model).

In the case of the square lattices we were able to reproduce the suppression of spectral
weight at ω = 0 at temperatures above the critical temperature Tc. Moreover, for the
first time we investigated the pseudogap evolution using TPSC that was previously
studied with determinantal quantum Monte Carlo simulations [28]. During the course
of our examinations of the pseudogap phase we found that it is essential to use the
Stochastic analytic continuation method as the simplistic Padé approximation yields an
unphysical enhancement of spectral weight at ω = 0 at low temperatures. Furthermore,
while Monte Carlo simulations [32] produce an inexplicable second kink in the crossover
temperature Tx to filling diagramm, our results reveal only the physically relevant peak
that can be associated to the transition from commensurate to incommensurate nesting
vectors (Fig. 6.2).
Monitoring the largest eigenvalue of the linearized Eliashberg equation we were already
able to estimate the shape of the superconducting region in the T −n-phase diagramm
without the necessity of tedious calculations of the critical temperature Tc.
To explore the considered model further, we performed calculations for different t′/t
ratios and saw that by choosing t′/t > 1 the symmetry of the gap function changes
from dx2−y2 to dxy.

As a second case we considered triangular lattices on the example of the organic
charge transfer salts within the dimer model. First, we saw that the pseudogap appears
and should be observable in all considered compounds as the calculated values for the
crossover temperature are always larger than the critical temperatures. The wrong
trends in the calculated critical temperatures are supposedly rooted in the failure of
the dimer model and the ambiguity in the choice of the Hubbard repulsion.

To summarize we have seen that using single-orbital TPSC we were able to repro-
duce the right pseudogap physics and the correct shape of the temperature-filling phase
diagram. Nevertheless, during the study we were confronted with limitations that we
can fix only partially. To be able to apply the TPSC method to more realistic cuprate
band structures it was shown by Ogura et al. that an extension to a multi-orbital
TPSC [44] is necessary to recover the dome-like shape of the critical temperature Tc in
dependence of the filling [4].
For a more accurate description of the organic charge transfer salts we have seen that
the dimer model is not sufficient. Therefore, it is necessary to extend our study to a
molecule-based multi-site model, which has been found to yield a different gap sym-
metry. The averaging over the hopping paths from the molecules of one dimer to one
molecule of a neighboring dimer is only legitimate if both hoppings are of a similar
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magnitude [6]. In the case of the studied compounds (Tab. 1) this condition is not
satisfied. Hence, we will take the full set of hopping parameters, which we obtain using
the projective Wannier function method after a density functional calculation. So far,
there is no formulation of multi-site TPSC and we are going to develop this by al-
ways sticking to the main ideas of TPSC, i.e. sum rules and self-consistency. Another
possible extension would be the insertion of a nearest neighbor interaction V .

Regarding improvements of the TPSC method:
Deficiencies in the strong coupling limit are inherent problems since the ansatz for the
Luttinger-Ward functional (Eq. 4.34) explicitly averages over higher order correlations
and drops therefore the frequency dependency.
Nevertheless, one might be able to improve the theory and allow calculations deeper
inside the classical renormalized regime by taking a different ansatz for the irreducible
spin vertex Usp (Eq. 4.45) that does not lead to 〈n↑n↓〉 → 0 deep inside the pseudogap
phase.
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A NUMERICAL ISSUES

A. Numerical issues

In this appendix we show how to perform sums over Matsubara frequencies by high-
frequency expansion.

A.1. High-frequency behaviour of G and Σ

Firstly, we use the relation between the Matsubara Green’s function G(~k, ikn) and the
spectral weight A(~k, ω) (Eq. 3.65) to see the form of G(~k, ikn) for large n:

G(~k, ikn) =

∫ ∞
−∞

dω

2π

A(~k, ω)

ikn − ω

→ 1

ikn

∫ ∞
−∞

dω

2π
A(~k, ω) |3.39

=
1

ikn
. (A.1)

Hence, from the Dyson equation (Eq. 4.56) follows that the self-energy should not
diverge. Intuitively, we expect the spectral weight A(~k, ω) to fall off very fast for large
|ω| which can also be proven [2] and we can expand

G(~k, ikn) =
∞∑
j=0

cj(~k)

(ikn)j
=

1

ikn
+

c1
~k

(ikn)2
+O

((
1

kn

)3
)

(A.2)

Σ(~k, ikn) =
∞∑
j=0

dj(~k)

(ikn)j
. (A.3)

A.2. Calculation of the filling n / adjusting the chemical potential µ

At two steps of the self-consistency one is confronted with changes of the Green’s
function (Sec. 4.3) and therefore with an aberration from the correct filling.
At large Matsubara frequencies the Green’s function can be expanded in terms of
the Matsubara frequencies ikn with coefficients cj(~k) ∈ R and shows the following
asymptotic behaviour

G(~k, iωn) =

∞∑
j=0

cj(~k)

(ikn)j

n>>1
≈ c0(~k) +

c1(~k)

ikn
+

c2(~k)

(ikn)2
+

c3(~k)

(ikn)3
+

c4(~k)

(ikn)4
. (A.4)

In case of Matsubara Green’s functions (Eq. 4.56) the Fourier transformation is well
defined and the function is normalized to one particle, i.e. c0(~k) = 0 and c1(~k) = 1.
Numerically one is restricted to finite sums which means that the sum appearing in
the formula for the filling n~k (Eq. 3.58) has to be approximated by fitting analytically
calculated tails. The number of Matsubara frequencies we want to store and use for
calculations is limited to Nmats and the remaining ones are approximated by the high-
frequency tail.

G(~k, τ) =T
∞∑

n=−∞
G(~k, ikn)e−iknτ
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A.3 Matsubara sums of the form
∑

n f(n) ∗ g(n+m)

=T

 Nmats∑
n=−Nmats

G(~k, ikn)e−iknτ +
∑

n/∈[−Nmats,Nmats]

G(~k, ikn)e−iknτ


A.4
≈ T

[
Nmats∑

n=−Nmats

G(~k, ikn)e−iknτ

+
∑

n/∈[−Nmats,Nmats]

(
1

ikn
+

c2(~k)

(ikn)2
+

c3(~k)

(ikn)3
+

c4(~k)

(ikn)4

)
e−iknτ

 .
(A.5)

To complete the second sum one inserts an effective zero by adding and subtracting
the missing part of the sum,

G(~k, τ) ≈ T

[
Nmats∑

n=−Nmats

(
G(~k, ikn)−

(
1

ikn
+

c2(~k)

(ikn)2
+

c3(~k)

(ikn)3
+

c4(~k)

(ikn)4

))
e−iknτ

+

∞∑
n=−∞

(
1

ikn
+

c2(~k)

(ikn)2
+

c3(~k)

(ikn)3
+

c4(~k)

(ikn)4

)
e−iknτ ]. (A.6)

The second sum can be evaluated analytically and give the following result after per-
forming limτ→0− :

n~k ≈
1

2
− c2(~k)

4T
+
c4(~k)

48T 2
+ T

Nmats∑
n=−Nmats

(
G(~k, ikn) +

c2(~k)

k2
n

− c4(~k)

k4
n

)
. (A.7)

To get the total filling it suffices to sum over the first Brillouin zone, i.e.

n ≈ 1

2
+

1

N

∑
~k

[
−c2(~k)

4T
+
c4(~k)

48T 2
+ T

Nmats∑
n=−Nmats

(
G(~k, ikn) +

c2(~k)

k2
n

− c4(~k)

k4
n

)]
.

(A.8)
Fixing the chemical potential to the right filling n0 is now accomplished by finding the
root of the function

f(µ) = n(µ)− n0. (A.9)

n(µ) is the calculated filling (Eq. A.8) where µ influences the appearing coefficients
and the Matsubara Green’s function G(~k, ikn).
The root is numerically found by using the bisection method where µ ∈ [−U/2, U/2].

A.3. Matsubara sums of the form
∑

n f(n) ∗ g(n+m)

The considerations of this sections are explained within the example of calculating the
irreducible susceptibility χ0(~q, iqn) (Eq. 4.17) but they can be analoguously applied
to the calculation of the self-energy Σ(~k, ikn) (Eq. 4.55) and the superconducting gap
function ∆(~k, ikn) (Eq. 5.1).
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We start with

χ0(~q, iqn) = − T
N

∑
~k,ikm

G0(~k; ikm)G0(~k + ~q; ikn + iqm). (A.10)

Again, one has to approximate an infinite sum over Matsubara frequencies by a finite
one. But differently to the steps shown in Sec. A.2 it is important to take care of the
shift while performing the analytically exact sum. The approximation will take the
following form for one fixed addend ~k,

−T
∞∑

n=−∞
G0(~k;ikm)G0(~k + ~q; ikn + iqm)

=− T
Nmats∑

n=−Nmats

G0(~k; ikm)G0(~k + ~q; ikn + iqm)

− T
∑

n/∈[−Nmats,Nmats]

G0(~k; ikm)G0(~k + ~q; ikn + iqm)

≈− T
Nmats∑

n=−Nmats

G0(~k; ikm)G0(~k + ~q; ikn + iqm)

− T
∑

n/∈[−Nmats,Nmats]

(
1

ikn
+

c1(~k)

(ikn)2

)(
1

ikn+m
+
c1(~k + ~q)

(ikn+m)2

)
. (A.11)

Adding and subtracting the same terms as done before completes the second sum and
leads to the following result:

−T
Nmats∑

n=−Nmats

[
G0(~k; ikm)G0(~k + ~q; ikn + iqm)

+

(
1

ikn
+

c1(~k)

(ikn)2

)(
1

ikn+m
+
c1(~k + ~q)

(ikn+m)2

)]

−T
∞∑

n=−∞

(
1

ikn
+

c1(~k)

(ikn)2

)(
1

ikn+m
+
c1(~k + ~q)

(ikn+m)2

)

≈− T
Nmats∑

n=−Nmats

[
G0(~k; ikm)G0(~k + ~q; ikn + iqm)

+

(
1

ikn
+

c1(~k)

(ikn)2

)(
1

ikn+m
+
c1(~k + ~q)

(ikn+m)2

)]

−T
∞∑

n=−∞

(
1

ikn
+

c1(~k)

(ikn)2

)(
1

ikn+m
+
c1(~k + ~q)

(ikn+m)2

)

= −T
Nmats∑

n=−Nmats

[
G0(~k; ikm)G0(~k + ~q; ikn + iqm)

+

(
1

ikn
+

c1(~k)

(ikn)2

)(
1

ikn+m
+
c1(~k + ~q)

(ikn+m)2

)]
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A.3 Matsubara sums of the form
∑

n f(n) ∗ g(n+m)

−T

 −1
4T 2 + c1(~k)c1(~k+~q)

48T 4 , for m = 0

1
2Tq2n

{
c1(~k)c1(~k+~q)

T + imπ
[
c1(~k)− c1(~k + ~q)

]}
, for m 6= 0

(A.12)

These sums have to be performed for every ~q-point of the mesh and every Matsubara
frequency qn where n ∈ [0, Nmats]. These calculations yield deeply nested loops that
increase the computing time dramatically.
To tackle this problem it is convenient to vectorize the innermost sum over the Mat-
subara frequencies and to parallelize over the ~q-mesh.
Finally, the shift in the second factor G0(~k + ~q; ikn + iqm) induces another significant
problem. If one intends to store the irreducible susceptibility χ0(q) for the first Nmats

frequencies it is not enough to carry out the sum only from −Nmats to Nmats since this
would mean a cut-off in the summation although a non-negligible overlap is present.
Fig. A.1 shows this situation schematically in the case of χ0(iqNmats).

-Nmats Nmats

Im
(G

(i
k

n
))

n

Im(G(ikn))
Im(G(ikn+Nmats

))

Figure A.1: Schematic overlap over the imaginary part of both Green’s function G(ikn)
(solid line) and G(ikn+Nmats) (dotted line) to get χ0(iqNmats). Performing
the summation only from −Nmats to Nmats would cut off an important
contribution from n < Nmats.

This cut-off leads to an non-physical increase of the non-interacting susceptibility
χ0(iqn) at large Matsubara frequencies (Fig. A.2). To avoid this behavior it suffices
to increase the summation domain by the number of the bosonic Matsubara frequency,
i.e. for the calculation of χ0(iqm) one would have to integrate n ∈ [−Nmats−m,Nmats].
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Figure A.2: Improvement of the high-frequency behavior of χ0(iqn) (green line) at large
Matsubara frequencies if the summation is carried out in an adaptive inte-
gration domain [−Nmats−n,Nmats] for every point of χ0(iqn). An increase
for large n is not physical but a consequence of insufficient summation (red
dotted line).

B. ~k-integration

A few subtleties that occurred while implementing the ~k-integration for TPSC shall be
mentioned in this section.

a) ~k-integrations by means of the adaptive cubature procedure

and the 2D-trapezoidal rule:

One of the most frequent operations within TPSC is the integration over the first Bril-
louin zone. In my implementation we make a difference between integrands that are
available at all ~k-points and at finite ~k-points.

(i) adaptive cubature:
The non-interacting Green’s function G0(~k; ikn) (Eq. 3.55) is known at all points of its
domain and appears as a part of an integrand in the calculation of the initial filling n
(Eq. 3.58) and of the non-interacting susceptibility χ0(~q; iqn) (Eq. 4.17).
The Green’s function might exhibit strong dependence of ~k as shown in Fig. B.1 where
it remains nearly constant in a large region and changes drastically near the Fermi
surface. In this case it is reasonable to use a rare integration grid far from the kinks
and to increase the density of integration points near the kinks.
The adaptive cubature applies exactly this idea and proceeds in the following way:

0) Divide domain into triangles and do the following steps for every triangle.
1) Calculate integral over the triangular region.
2) Divide the triangle into four triangles and integrate again over each new triangular region.
3) Do the four new integrals sum up to the previous one within some given tolerance ε?
−→ No, repeat 2) for all four triangles.
−→ Yes, the integral is converged; return value.
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Figure B.1: Real part of the non-interacting Green’s function G0(kx, ky; ik0) for the
square lattice at T = 0.05eV and half filling. The function shows a strong
dependence on kx,ky only near the Fermi surface and is therefore predes-
tined for adaptive cubature.

To perform the integration over triangular regions one can take advantage of the seven-
point cubature-formula [45],∫

4
f(x, y)dxdy ≈ |4|

7∑
i=1

wif(xi, yi). (B.1)

The positions of the nodes (xi, yi) in natural coordinates (Fig. B.2) and the weights wi
are
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xi yi wi
0 0 3/60
0 1
1 0

0.5 0 8/60
0 0.5

0.5 0.5

1/3 1/3 27/60
Figure B.2: Natural coordinates for the triangle and

position of integration nodes. The red
point at the edges will bear a weight
of 3/60, the blue points in between of
8/60 and the green point in the center
of 27/60.

(ii) 2D trapezoidal-rule:
In many other cases the integrand is only available at a number of positions. An easy
but nevertheless reliable integration routine in this case is the 2D-trapezoidal rule.
This is demonstrated – although it might be formulated more generally, we will show it
only for the relevant cases of this work – for the integration of an arbitrary integrable
function from some two-dimensional field K2 to an one-dimensional field K ′, f : K →
K ′, that is known at N2 ∈ N points (xi, yj) ∈ K2 ∀i, j ∈ {1, .., N} that are located
homogeneously in our integration domain, a two-dimensional square [x1, xN ]× [y1, yN ].
The procedure consists of the application of twice the trapezoidal rule. We define
A := (xN − x1)(yN − y1) and get

1

A

∫ xN

x1

∫ yN

y1

f(x, y)dxdy ≈ 1

N(yN − y1)

∫ yN

y1

(
1

2
f(x1, y) +

N−1∑
i=2

f(xi, y) +
1

2
f(xN , y)

)
dy

≈ 1

N2

[
1

4
(f(x1, y1) + f(x1, yN ) + f(xN , y1) + f(xN , yN ))

+
1

2

N−1∑
i=2

(f(x1, yi) + f(xN , yi) + f(xi, y1) + f(xi, yN ))

+
N−1∑
i,j=2

f(xi, yj)

 . (B.2)

To ensure an efficient implementation on should rearrange the last two sums in an outer
and an inner sum.
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B.1. Calculation of the Lindhard function χ0(~q, iqn)

Starting-point for the calculation of the non-interacting susceptibility χ0(q) is equation
4.17,

χ0(~q, iqn) = − 1

N

∑
~k

f
(
ξ~k
)
− f

(
ξ~k+~q

)
iqn −

[
ξ~k+~q

− ξ~k
] . (B.3)

Since it might happen at iqn = 0 that ξ~k+~q
= ξ~k and therefore also f

(
ξ~k+~q

)
= f

(
ξ~k
)

one has to apply the rule of de l’Hospital to get correct results, i.e.

f
(
ξ~k
)
− f

(
ξ~k+~q

)
−
[
ξ~k+~q

− ξ~k
] ξ~k+~q→ξ~k−→ − 1

T

eξ~k/T(
1 + eξ~k/T

)2 . (B.4)
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