
Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 06.05.2024
C. Gros, D. Nevermann

Exercise Sheet #4
Deadline: 13.05.2024, 12:00h

Can’t get enough of C++? This series on YouTube is recommended to
strengthen your understanding of the concepts, for lecture revision and to
learn even more about C++.

Problem 1 (Templates and Function Pointers) (10 points)

Templates in C++ are a powerful feature that allows you to write generic code
that can work with different data types. We therefore do not have to rewrite
a function if we want to pass different types to it. For the following tasks,
implement the requested functions and show its functionality by providing
at least one suitable example.

(a) Implement two functions add and multiply with a template type T for
the arguments and the return value, which takes two numbers of the
same template type (e.g. int, double) and return the sum and product
of those numbers, respectively.

(2© points)

On exercise sheet #3 we worked with pointers to variables. Just like vari-
ables, function are stored somewhere in memory – we can therefore also
have function pointers. To retrieve the address of a function, we use the
syntax &function_name. We can declare function pointers with the syn-
tax return_type (*funcPtr)(parameter_type, ...);. In order to call
the function to which the function pointer points to, we can use the syn-
tax (*funcPtr)(parameters);.1

(b) We now want to write a function that prints the result of a mathemati-
cal operation of two numbers. Write a function printOperationResult
with three parameters and return type void. Two parameters are num-
bers of template type T the third is a function pointer to a function
taking itself two numbers of type T as input and returning a number of
type T. The function printOperationResult should call the function
associated with the third parameter (function pointer) with the first to
parameters and print the result of this function call to the console. Test
your function with the two functions from part (a) as input.

(4© points)
1It also works to just write funcPtr(parameters);

1

https://www.youtube.com/playlist?list=PLlrATfBNZ98dudnM48yfGUldqGD0S4FFb

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 06.05.2024
C. Gros, D. Nevermann

(c) Write a function that has a templated integer parameter and takes as an
argument an array of template type T and length N. The function shall
print all entries of the array and the size of the array.
Hint: The function declaration then looks like this:

template<typename T, int N> func_name (T (&array)[N]).
(1© point)

(d) What happens if the function from part (b) is called with a dynamically
allocated array, i.e. int * a = new int[N]. Why does this happen?
Give your solution to the question in a comment of your code.
Hint: The functions with the appropriate data types are generated from the tem-
plates at compile time, what about dynamically allocated arrays?

(1© point)

(e) Write a function similar to the one from part (c) that you can pass a
two-dimensional N×M array and that prints the dimensions of the array
and all entries to the console.

(2© points)

2

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 06.05.2024
C. Gros, D. Nevermann

Problem 2 (Iterative Bisection Method) (10 points)
The Iterative Bisection Method is a
simple algorithm to find the roots of
a function. Your goal is to implement
the algorithm both iteratively and re-
cursively, try out your implementation
with a few examples and compare the
two implementations. Here is how the
algorithm works:
Let F : [a, b] → R be a continuous function with exactly one root ξ ∈ (a, b)
and F (a) · F (b) < 0. Start by setting a1 := a and b1 := b. For n = 1, 2, . . . ,
set

x :=
an + bn

2
.

If F (an) · F (x) ≤ 0, set an+1 := an and bn+1 := x, else set an+1 := x and
bn+1 := bn. Terminate, if ‖bn+1 − an+1‖ < ε. For a visualization of the
algorithm see the figure to the right.
Follow these steps which will guide you through the implementation:

(a) Define a function iterative_bisection that takes a function pointer
to the function F under investigation, starting values a1 and b1, an abso-
lute tolerance ε and a maximal number of iterations as parameters, and
implement the iterative bisection method in the function body. Termi-
nate the algorithm if either the desired accuracy or the maximal number
of iterations is reached and output the found value for the root, the re-
maining error range and the number of iterations until convergence to
the console. Make sure to test the given starting values for validity and
display appropriate error messages if something goes wrong.

(5© points)

(b) Now implement a function iterative_bisection_recursive that runs
the same algorithm, but does so using recursion.

(4© points)

(c) Test both of your implementation with at least two different functions F
and make sure they yield the same results.

(1© point)

3

Advanced Introduction to C++, Scientific
Computing and Machine Learning

SoSe 24 | 06.05.2024
C. Gros, D. Nevermann

Problem 3 (Advanced: Bitwise Operations) (10 points)

In C++ you can manipulate data on the level of its binary representation.
The six bitwise operations are:

Operator Symbol Form Operation
left shift << x << y all bits in x shifted left y bits
right shift >> x >> y all bits in x shifted right y bits
bitwise NOT ~ ~ x all bits in x flipped
bitwise AND & x & y each bit in x AND each bit in y
bitwise OR | x | y each bit in x OR each bit in y
bitwise XOR ^ x ^ y each bit in x XOR each bit in y

The goal of this exercise is to do basic algebra on the bitwise level.

• Write a function that takes two positive integers and returns their
sum, not using +, -, * or /. You should be able to achieve this by
manipulating the numbers on the bitwise level. You are also allowed
to use the conventional syntax to control the program flow, as well as
comparators (e.g. x > y). For a start, read up on how addition of
numbers is done in binary arithmetic e.g. at https://en.wikipedia.
org/wiki/Binary_number#Addition.
Hint: It might be necessary to perform the carrying, as described in the reference,
multiple times. You need to add the carried bits to the result, so recursion could
be useful.

• Write a function that implements the multiplication of two positive
integers with the same restrictions to bitwise operations. Read up on
how to multiply binary numbers e.g. at https://en.wikipedia.org/
wiki/Binary_number#Multiplication.
Hint: You should use the adding function from the first part of the exercise.

4

https://en.wikipedia.org/wiki/Binary_number#Addition
https://en.wikipedia.org/wiki/Binary_number#Addition
https://en.wikipedia.org/wiki/Binary_number#Multiplication
https://en.wikipedia.org/wiki/Binary_number#Multiplication

	(Templates and Function Pointers)(10 points)
	(Iterative Bisection Method)(10 points)
	(Advanced: Bitwise Operations)(10 points)

